DOI QR코드

DOI QR Code

CO2 Sequestration and Utilization of Calcium-extracted Slag Using Air-cooled Blast Furnace Slag and Convert Slag

괴재 및 전로슬래그를 이용한 CO2 저감 및 칼슘 추출 후 슬래그 활용

  • 유영석 (한국지질자원연구원 탄소광물화사업단) ;
  • 최홍범 (공주대학교 건축공학과) ;
  • 방준환 (한국지질자원연구원 탄소광물화사업단) ;
  • 채수천 (한국지질자원연구원 탄소광물화사업단) ;
  • 김지환 (한국지질자원연구원 탄소광물화사업단) ;
  • 김진만 (공주대학교 건축공학과) ;
  • 이승우 (한국지질자원연구원 탄소광물화사업단)
  • Received : 2016.12.01
  • Accepted : 2017.01.04
  • Published : 2017.02.10

Abstract

Mineral carbonation is a technology in which carbonates are synthesized from minerals including serpentine and olivine, and industrial wastes such as slag and cement, of which all contain calcium or magnesium when reacted with carbon dioxide. This study aims to develop the mineral carbonation technology for commercialization, which can reduce environmental burden and process cost through the reduction of carbon dioxide using steel slag and the slag reuse after calcium extraction. Calcium extraction was conducted using NH4Cl solution for air-cooled slag and convert slag, and ${\geq}98%$ purity calcium carbonate was synthesized by reaction with calcium-extracted solution and carbon dioxide. And we conducted experimentally to minimize the quantity of by-product, the slag residue after calcium extraction, which has occupied large amount of weight ratio (about 80-90%) at the point of mineral carbonation process using slag. The slag residue was used to replace silica sand in the manufacture of cement panel, and physical properties including compressive strength and flexible strength of panel using the slag residue and normal cement panel, respectively, were analyzed. The calcium concentration in extraction solution was analyzed by inductively coupled plasma optical emission spectrometer (ICP-OES). Field-emission scanning electron microscope (FE-SEM) was also used to identify the surface morphology of calcium carbonate, and XRD was used to analyze the crystallinity and the quantitative analysis of calcium carbonate. In addition, the cement panel evaluation was carried out according to KS L ISO 679, and the compressive strength and flexural strength of the panels were measured.

광물탄산화 기술은 천연광물 및 산업부산물에 포함된 칼슘이나 마그네슘을 이산화탄소와 반응시켜 탄산염을 생성하는 기술로 이산화탄소를 열역학적으로 안정한 형태로 저장할 수 있는 기술이다. 본 연구는 철강슬래그를 이용한 이산화탄소 저감 및 추출 후 슬래그 재활용을 통해 환경적 부담 및 공정 비용 절감을 절감할 수 있는 광물탄산화 상용화 기술 개발을 목표로 설정하였다. 추출 용매(염화암모늄)를 사용하여 괴재 및 전로슬래그로부터 칼슘을 추출하고 추출된 칼슘을 이산화탄소와 반응시켜 순도 98% 이상의 탄산칼슘을 합성하였다. 또한 칼슘 추출 후 슬래그를 건축자재(패널)로 활용하는 기술을 개발하였다. 슬래그의 칼슘 추출효율에 따라 상이한 결과를 보였지만 광물탄산화 전체 공정에 있어 중량 비(약 80-90%)를 차지하는 칼슘 추출 후 슬래그(잔여슬래그)의 활용을 통해 광물탄산화 공정으로부터 배출되는 산업부산물의 양을 최소화하고자 하였다. 잔여슬래그는 시멘트 패널 제작에 활용되는 규사미분 대체 물질로서 이용하였고 기존 시멘트 패널과 물성평가(압축강도 및 휨강도)를 상호 비교하였다. 용액 내 칼슘 농도는 유도결합 플라즈마 분광분석기(Inductively coupled plasma optical emission spectrometer, ICP-OES)를 사용하여 분석하였다. 합성한 탄산칼슘은 X선 회절 분석법(X-ray diffraction, XRD)을 이용하여 결정학적 특성 및 정량 분석하였고 주사 전자 현미경(Field emission scanning electron microscope, FE-SEM)을 사용하여 표면 형상을 확인하였다. 시멘트 패널평가는 KS L ISO 679에 준하여 패널 제작 및 패널의 압축강도와 휨강도를 측정하였다.

Keywords

References

  1. H. Jo, H. Y. Jo, S. Rha, and P. K. Lee, Direct aqueous mineral carbonation of waste slate using ammonium salt solutions, Metals, 5, 2413-2427 (2015). https://doi.org/10.3390/met5042413
  2. W. J. J. Huijgen and R. N. J. Comans, Carbonation of steel slag for $CO_2$ sequestration: Leaching of products and reaction mechanisms, Environ. Sci. Technol., 40, 2790-2796 (2006). https://doi.org/10.1021/es052534b
  3. Y. Sun, M. S. Yao, J. P. Zhang, and G. Yang, Indirect $CO_2$ mineral sequestration by steelmaking slag with $NH_4Cl$ as leaching solution, Chem. Eng. J., 173, 437-445 (2011). https://doi.org/10.1016/j.cej.2011.08.002
  4. M. Dri, A. Sanna, and M. M. Maroto-Valer, Mineral carbonation from metal wastes: Effect of solid to liquid ratio on the efficiency and characterization of carbonated products, Appl. Energy, 113, 515-524 (2014). https://doi.org/10.1016/j.apenergy.2013.07.064
  5. W. Bao, H. Li, and Z. Yi, Selective leaching of steelmaking slag for indirect $CO_2$ mineral sequestration, Ind. Eng. Chem. Res., 49, 2055-2063 (2010). https://doi.org/10.1021/ie801850s
  6. K. S. Lackner, C. H. Wendt, D. P. Butt, E. L. Joyce Jr., and D. H. Sharp, Carbon dioxide disposal in carbonate minerals, Energy, 20, 1153-1170 (1995). https://doi.org/10.1016/0360-5442(95)00071-N
  7. E. R. Bobicki, Q. Liu, Z. Xu, and H. Zeng, Carbon capture and storage using alkaline industrial wastes, Prog. Energy Combust. Sci., 38, 302-320 (2012). https://doi.org/10.1016/j.pecs.2011.11.002
  8. S. Eloneva, A. Said, C.-J. Fogelholm, and R. Zevenhoven, Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate, Appl. Energy, 90, 329-334 (2012). https://doi.org/10.1016/j.apenergy.2011.05.045
  9. S. W. Choi, V. Kim, W. S. Chang, and E. Y. Kim, The present situation of production and utilization of steel slag in Korea and other countries, Mag. Korea Concr. Inst., 19, 28-33 (2007).
  10. T. Sudarat, C. Juntima, and B. Charun, Leaching of steelmaking slag using acetic acid solution and deionized water for $CO_2$ sequestration, The 10th International PSU Engineering Conference, May 14-15, Hat Yai, Thailand (2012).
  11. J. G. Jeon, S. J. Jin, and D. H. Kim, Present status and recycling technology for slag in Korea, J. Korean Inst. Resour. Recycl., 8, 8-10 (2013).
  12. J. M. Kim, Present Status on the Manufacturing and application of steel slag aggregate, Archit. Res., 8, 29-36 (2012).
  13. S. H. Lee, H. J. Hwang, and S. K. Kwon, Properties of blast furnace slag cement modified with electric arc furnace slag, J. Korean Ceram. Soc., 43, 408-414 (2006). https://doi.org/10.4191/KCERS.2006.43.7.408
  14. S. Teir, S. Eloneva, C. J. Fogelholm, and R. Zevenhoven, Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production, Energy, 32, 528-539 (2007). https://doi.org/10.1016/j.energy.2006.06.023
  15. K. B. Youn, The extraction of Ca in electric arc furnace slag for $CO_2$ sequestration, J. Korean Inst. Resour. Recycl., 22, 64-71 (2013).
  16. C. Domingo, E. Loste, J. Gomez-Morales, J. Garcia-Carmona, and J. Fraile, Calcite precipitation by a high-pressure $CO_2$ carbonation route, J. Supercrit. Fluids, 36, 202-215 (2006). https://doi.org/10.1016/j.supflu.2005.06.006
  17. J. H. E. Cartwright, A. G. Checa, J. D. Gale, D. Gebauer, and C. I. Sainz-Diaz, Calcium carbonate polymorphism and its role in biomineralization: How many amorphous calcium carbonates are there?, Angew. Chem. Int. Ed., 51, 11960-11970 (2012). https://doi.org/10.1002/anie.201203125
  18. W. M. Jung, S. H. Kang, W. S. Kim, and C. K. Choi, Particle morphology of calcium carbonate precipitated by gas-liquid reaction in a Couette-Taylor reactor, Chem. Eng. Sci., 55, 733-747 (2000). https://doi.org/10.1016/S0009-2509(99)00395-4
  19. J. P. Andreassen, Growth and aggregation phenomena in precipitation of calcium carbonate, The Faculty of Natural Sciences and Technology, Trondheim, Norway (2001).
  20. J. L. Park, S. K. Choi, B. G. Kim, and J. J. Lee, Effect of temperature on the formation of vaterite in $Ca(OH)_2-CH_3OH-H_2O-CO_2$ system, J. Korean Ceram. Soc., 39, 1143-1148 (2002). https://doi.org/10.4191/KCERS.2002.39.12.1143
  21. S. Arshe, H. P. Mattila, J. Mika, and Z. Ron, Production of precipitated calcium carbonate (PCC) from steelmaking for fixation of $CO_2$, Appl. Energy, 112, 765-771 (2013). https://doi.org/10.1016/j.apenergy.2012.12.042
  22. C. Kunzler, N. Alves, E. Pereira, J. Nienczewski, R. Ligabue, S. Einloft, and J. Dullius, $CO_2$ storage with indirect carbonation using industrial waste, Energy Procedia, 4, 1010-1071 (2011). https://doi.org/10.1016/j.egypro.2011.01.149
  23. W. K. Park, S. J. Ko, S. W. Lee, K. H. Cho, J. W. Ahn, and C. Han, Effects of magnesium chloride and organic additives on the synthesis of aragonite precipitated calcium carbonate, J. Cryst. Growth, 310, 2593-2601 (2008). https://doi.org/10.1016/j.jcrysgro.2008.01.023
  24. D. Wolff-Boenisch, S. R. Gislason, and E. H. Oelkers, The effect of crystallinity on dissolution rates and $CO_2$ consumption capacity of silicates, Geochim. Cosmochim. Acta., 70, 858-870 (2006). https://doi.org/10.1016/j.gca.2005.10.016
  25. Y. S. Han, G. Hadiko, M. Fuji, and M. Takahashi, Crystallization and transformation of vaterite at controlled pH, J. Cryst. Growth, 289, 269-274 (2006). https://doi.org/10.1016/j.jcrysgro.2005.11.011
  26. J. Luo, F. Kong, and X. Ma, Role of aspartic acid on the synthesis of spherical vaterite by the Ca(OH)-CO reaction, Cryst. Growth Des., 16, 728-736 (2016). https://doi.org/10.1021/acs.cgd.5b01333
  27. Y. J. Ahn, J. H. Jeon, S. H. Lee, Y. H. Yu, H. M. Jeon, J. W. Ahn, and C. Han, Formation behavior of precipitated calcium carbonate polymorphs by supersaturation, J. Korean Inst. Resour. Recycl., 24, 22-31 (2015).
  28. Guidelines on the design of cement concrete pavement, national report, Ministry of Land, Infrastructure and Transport, Korea (2009).
  29. A. M. Neville, Properites of Concrete, 5th edition, Prentice Hall, New Jersey, NJ (2011).
  30. J. M. Kim, S. M. Choi, H. N. Lee, M. Li, H. S. Cho, and W. S. Moon, Initial hydration properties of CA based ladle furnace slag with low silica oxide content in Iron recycling process, Proc. Korea Concr. Inst., 26(2), 317-318 (2014).
  31. J. T. Park and H. Oh, Experimental study on the material characteristics of slag cement with various phosphogypsum materials, J. Korea Concr. Inst., 21, 729-735 (2009). https://doi.org/10.4334/JKCI.2009.21.6.729
  32. I. Y. Ko, B. S. Jin, and Y. W. Kim, A study on the reuse of modified and quenched converter slag as cement additives, J. Korean Inst. Resour. Recycl., 12, 23-28 (2003).
  33. H. S, Cho, Y. B. Mun, W. S. Moon, D. C. Park, C. H. Kim, and H. K. Choi, Up-cycling of air-cooled ladle furnace slag: Environmental risk assessment and mortar compressive strength assesment of binary and ternary blended cement using air-cooled ladle furnace slag, J. Korean Soc. Environ. Eng., 37, 159-164 (2015). https://doi.org/10.4491/KSEE.2015.37.3.159
  34. Y. J. An, I. K. Han, J. S. Choi, K. H. Bae, and H. S. Kim, Hydration property of electric arc furnace reducing slag, J. Korean Inst. Resour. Recycl., 19, 93-101 (2010).

Cited by

  1. 산/염기성 물질 주입에 따른 칼슘이온 분리 특성 연구 vol.31, pp.1, 2017, https://doi.org/10.14478/ace.2020.1001