DOI QR코드

DOI QR Code

Performance Enhancement and Recovery Method of Open Cathode PEMFC

오픈 캐소드형 고분자전해질 연료전지의 성능향상과 회복기법

  • Lee, Kitaek (School of Chemical Engineering, University of Ulsan) ;
  • Kim, Junbom (School of Chemical Engineering, University of Ulsan)
  • Received : 2016.12.21
  • Accepted : 2016.12.29
  • Published : 2017.02.10

Abstract

An air cooling, open cathode type polymer electrolyte membrane fuel cell (PEMFC) has the advantages of system simplification and cost effectiveness. Open cathode PEMFC could suffer from reduced performance due to the membrane dehydration in low humidity of air. Effects of the cathode air flow rate, anode purge interval and long term storage on PEMFC performance were investigated in this work. Fan voltage is an important factor on air cooling PEMFC performance because the cathode air flow rate and stack temperature were controlled by fan voltage. The dead ended anode (DEA) method was applied to increase hydrogen usage. Periodical purge was used to discharge accumulated water and gas. The influence of long term non-operating condition on PEMFC performance degradation due to the membrane dehydration was also studied and the quick recovery method was developed.

공랭식 고분자전해질 연료전지는 개방된 cathode구조로 인하여 시스템의 단순화와 부품 수 저감의 장점이 있다. 공랭식 연료전지는 최근에 많이 연구되고 있지만, 성능이 외부 환경에 영향을 받으며, 공기의 상대습도가 낮은 경우 전해질막의 건조로 인한 성능 감소가 발생할 수 있다. 본 연구에서는 공랭식 연료전지의 성능에 영향을 주는 요인인 cathode 측 공기 유량과 anode 측 purge interval영향에 대해 분석하였으며, 스택을 운전하지 않는 상태로 장기간 보관하는 것이 성능에 미치는 영향에 대하여 실험을 수행하였다. 연료전지 외부에 설치한 fan의 전압을 조절하면 cathode 측 공기의 공급유량을 변화시킬 수 있고 스택의 온도도 제어할 수 있으므로, fan전압은 공랭식 연료전지의 성능에 영향을 주는 중요한 인자이다. 연료전지 시스템을 단순화하고 수소의 사용률을 높이기 위하여 anode 측은 dead ended anode (DEA) 기법을 사용하였다. 주기적인 purge를 실행하여 생성된 물과 가스를 배출하였으며, purge 주기를 변경하면서 스택의 성능에 미치는 영향에 대하여 실험을 수행하였다. 스택의 보관기간이 길어질수록 membrane dehydration으로 인해 성능이 감소하는 것을 실험을 통해 파악하였고, 단시간에 성능을 회복할 수 있는 기법을 제시하였다.

Keywords

References

  1. J. Kwon and J. Park, PEDOT polymer film based counter electrodes for Pt-free dye-Sensitized solar cells, J. Electrochem. Sci. Technol., 3, 89-92 (2013).
  2. J. G. Carton and A. G. Olabi, Wind/Hydrogen hybrid systems: opportunity for Ireland's wind resource to provide consistent sustainable energy supply, J. Energy, 35, 4536-4544 (2012).
  3. K. Ponmani and B. Muthukumaran, Investigation of nanometals (Ni and Sn) in platinum-based ternary electrocatalysts for ethanol electro-oxidation in membraneless fuel cells, J. Electrochem. Sci. Technol., 3, 95-105 (2015).
  4. S. Durga, K. Ponmani, and B. Muthukumaran, Electrochemical oxidation of hydrazine in membraneless fuel cells, J. Electrochem. Sci. Technol., 3, 73-81 (2014).
  5. J. Hamelin, K. Agbossou, A. Laperriere, F. Laurencelle, and T. K. Bose, Dynamic behavior of a PEM fuel cell stack for stationary applications, Int. J. Hydrogen Energy, 26, 625-629 (2001). https://doi.org/10.1016/S0360-3199(00)00121-X
  6. S. Ahn, S. Shin, H. Ha, S. Hong, and I. Oh, Performance and lifetime analysis of the kW-class PEMFC stack, J. Power Sources, 106, 295-303 (2002). https://doi.org/10.1016/S0378-7753(01)01032-1
  7. Z. Qi and A. Kaufman, Quick and effective activation of proton-exchange membrane fuel cells, J. Power Sources, 114, 21-31 (2003). https://doi.org/10.1016/S0378-7753(02)00587-6
  8. M. Debe, Electrocatalyst approaches and challenges for automotive fuel cells, Nature, 486, 43-51 (2012). https://doi.org/10.1038/nature11115
  9. D. Chung and Y. Sung, Electrocatalyst for the oxygen reduction reaction: from the nanoscale to the macroscale, J. Electrochem. Sci. Technol., 3, 65-72 (2014).
  10. L. Carrette, K. Friedrich, and U. Stimming, Fuel cells: principles, types, fuels, and applications, Chemphyschem, 1, 162-193 (2000). https://doi.org/10.1002/1439-7641(20001215)1:4<162::AID-CPHC162>3.0.CO;2-Z
  11. S. Kim and I. Hong, Membrane performance comparison in a proton exchange membrane fuel cell stack, J. Ind. Eng. Chem., 16, 901-905 (2010). https://doi.org/10.1016/j.jiec.2010.05.017
  12. H. Jeong, Y. Kim, Y. Lee, K. Ha, B. Won, D. Lee, and D. Hahn, A 'must-go path' scenario for sustainable development and the role of nuclear energy in the 21st century, Energy Policy, 38, 1962-1968 (2010). https://doi.org/10.1016/j.enpol.2009.11.077
  13. S. Shibahara, The 2011 Tohoku earthquake and devastating tsunami, Tohoku J. Exp. Med., 223, 305-307 (2011). https://doi.org/10.1620/tjem.223.305
  14. V. Mehta and J. S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources, 114, 32-53 (2003). https://doi.org/10.1016/S0378-7753(02)00542-6
  15. A. Rondao, N. Martins, and F. Marques, Ionic transport in (nano) composites for fuel cell, Int. J. Hydrogen Energy, 41, 7666-7675 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.102
  16. S. Kim and I. Hong, Effect of humidity and temperature on a proton exchange membrane fuel cell stack, J. Ind. Eng. Chem., 14, 357-364 (2008). https://doi.org/10.1016/j.jiec.2008.01.007
  17. H. Lee, T. Kim, and K. Park, Effect of temperature on electrochemical degradation of membrane in PEMFC, Korean Chem. Eng. Res., 47, 441-445 (2009).
  18. H. Pei, J. Shen, Y. Cai, Z. Tu, Z. Wan, Z. Liu, and W. Liu, Operation characteristics of air-cooled proton exchange membrane fuel cell stacks under ambient pressure, Appl. Therm. Eng., 63, 227-233 (2014). https://doi.org/10.1016/j.applthermaleng.2013.11.012
  19. N. Steiner, P. Mocoteguy, D. Candusso, D. Hissel, A. Hernandez, and A. Aslanides, A review on PEM voltage degradation associated with water management: impacts, influent factors and characterization, J. Power Sources, 183, 260-274 (2008). https://doi.org/10.1016/j.jpowsour.2008.04.037
  20. M. Paquin and L. G. Frechette, Understanding cathode flooding and dry-out for water management in air breathing PEM fuel cells, J. Power Sources, 180, 440-451 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.012
  21. T. Fabian, R. Rayre, S. Litster, F. Prinz, and J. Santiago, Passive water management at the cathode of a planar air-breathing proton exchange membrane fuel cell, J. Power Sources, 195, 3201-3206 (2010). https://doi.org/10.1016/j.jpowsour.2009.12.030
  22. T. Ous and C. Aroumanis, The formation of water droplets in an air-breathing PEMFC, Int. J. Hydrogen Energy, 34, 3476-3487 (2009). https://doi.org/10.1016/j.ijhydene.2009.02.037