DOI QR코드

DOI QR Code

Enhancement of Skin Antioxidant and Anti-Inflammatory Potentials of Agastache rugosa Leaf Extract by Probiotic Bacterial Fermentation in Human Epidermal Keratinocytes

프로바이오틱 유산균 발효에 의한 배초향 잎 추출물의 피부 항산화 및 항염증 활성 증대

  • Received : 2017.02.01
  • Accepted : 2017.03.24
  • Published : 2017.03.28

Abstract

This study aimed to investigate the effects of probiotic fermentation by comparing the skin antioxidant and anti-inflammatory properties of non-fermented (ARE) and fermented (ARE-F) hot water extracts of Agastache rugosa leaves. ARE-F was obtained via ARE fermentation using Lactobacillus rhamnosus HK-9. In vitro, anti-inflammatory properties were evaluated by analyzing the levels of nitric oxide (NO), reactive oxygen species (ROS), and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated HaCaT keratinocytes. In vitro antiradical activity was measured using 2,2-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. Attenuation of LPS-stimulated NO (p < 0.01), ROS (p < 0.001) and iNOS (p < 0.05) levels by ARE-F was significantly stronger than that by ARE in HaCaT keratinocytes. However, no differences were observed between the DPPH radical scavenging activities of ARE and ARE-F. ARE-F possesses enhanced skin antioxidant and anti-inflammatory properties, suggesting that probiotic bacterial fermentation can be considered an effective tool for augmenting some pharmacological properties of A. rugosa leaves. In brief, the skin antioxidant and anti-inflammatory potentials of A. rugosa leaf extract are augmented by the fermentation with L. rhamnosus HK-9, a probiotic bacterium.

본 연구에서, 비발효(ARE) 및 발효(ARE-F) 배초향 잎 열수 추출물의 피부 항산화 및 항염증 효능을 비교함으로써 프로바이오틱 발효의 효과를 검토하였다. ARE-F는 Lactobacillus rhamnosus HK-9 발효에 의하여 ARE로부터 제조되었다. In vitro 항염증 효능은 지질다당류(LPS)에 의하여 자극된 HaCaT 각질세포에서 일산화질소(NO), 활성산소종(ROS) 및 유도형 일산화질소합성효소(iNOS) 분석에 의하여 평가되었다. In vitro antiradical 활성은 2,2-diphenyl-2-picrylhydrazyl radical (DPPH) 소거 측정법에 의하여 평가되었다. LPS 자극에 의하여 증가된 NO, ROS 및 iNOS 수준에 미치는 ARE-F의 감소효과가 ARE에 의한 효과보다 현저히 강하였다. 그러나, ARE와 ARE-F의 DPPH 소거 효능에는 차이가 발견되지 않았다. ARE-F가 증강된 피부 항산화 및 항염증 효능을 갖고 있는데, 이 결과는 프로바이틱세균 발효가 배초향 잎의 일부 약리학적 효능을 증가시키는 효과적인 방법일 수 있음을 암시해 주고 있다. 요약하면, 배초향 잎 추출물의 피부항산화 및 항염증 활성이 프로바이오틱 세균인 L. rhamnosus HK-9에 의한 발효에 의하여 증강한다.

Keywords

References

  1. Kim YB, Kim JK, Uddin MR, Xu H, Park WT, Tuan PA, et al. 2013. Metabolomics analysis and biosynthesis of rosmarinic acid in Agastache rugosa Kuntze treated with methyl jasmonate. PLoS One 8: e64199. https://doi.org/10.1371/journal.pone.0064199
  2. Li HQ, Liu QZ, Liu ZL, Du SS, Deng ZW. 2013. Chemical composition and nematicidal activity of essential oil of Agastache rugosa against Meloidogyne incognita. Molecules 18: 4170-4180. https://doi.org/10.3390/molecules18044170
  3. Hong JJ, Choi JH, Oh SR, Lee HK, Park JH, Lee KY, et al. 2001. Inhibition of cytokine-induced vascular cell adhesion molecule-1 expression; possible mechanism for anti-atherogenic effect of Agastache rugosa. FEBS Lett. 495: 142-147. https://doi.org/10.1016/S0014-5793(01)02379-1
  4. Gao LP, Wei HL, Zhao HS, Xiao SY, Zheng RL. 2005. Antiapoptotic and antioxidant effects of rosmarinic acid in astrocytes. Pharmazie 60: 62-65.
  5. Swarup V, Ghosh J, Ghosh S, Saxena A, Basu A. 2007. Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob. Agents Chemother. 51: 3367-3370. https://doi.org/10.1128/AAC.00041-07
  6. Tuan PA, Park WT, Xu H, Park NI, Park SU. 2012. Accumulation of tilianin and rosmarinic acid and expression of phenylpropanoid biosynthetic genes in Agastache rugosa. J. Agric. Food Chem. 60: 5945-5951. https://doi.org/10.1021/jf300833m
  7. Park MJ, Bae YS. 2016. Fermented Acanthopanax koreanum root extract reduces UVB- and $H_2O_2$-induced senescence in human skin fibroblast cells. J. Microbiol. Biotechnol. 26: 1224-1233. https://doi.org/10.4014/jmb.1602.02049
  8. Antonopoulou I, Varriale S, Topakas E, Rova U, Christakopoulos P, Faraco V. 2016. Enzymatic synthesis of bioactive compounds with high potential for cosmeceutical application. Appl. Microbiol. Biotechnol. 100: 6519-6543. https://doi.org/10.1007/s00253-016-7647-9
  9. Lin CH, Wei YT, Chou CC. 2006. Enhanced antioxidative activity of soybean koji prepared with various filamentous fungi. Food Microbiol. 23: 628-633. https://doi.org/10.1016/j.fm.2005.12.004
  10. Chae GY, Ha BJ. 2011. The comparative evaluation of fermented and non-fermented soybean extract on antioxidation and whitening. Toxicol. Res. 27: 205-209. https://doi.org/10.5487/TR.2011.27.4.205
  11. Jung HJ, Choi H, Lim HW, Shin D, Kim H, Kwon B, et al. 2012. Enhancement of anti-inflammatory and antinociceptive actions of red ginseng extract by fermentation. J. Pharm. Pharmacol. 64: 756-762. https://doi.org/10.1111/j.2042-7158.2012.01460.x
  12. Park BG, Jung HJ, Cho YW, Lim HW, Lim CJ. 2013. Potentiation of antioxidative and anti-inflammatory properties of cultured wild ginseng root extract through probiotic fermentation. J. Pharm. Pharmacol. 65: 457-464. https://doi.org/10.1111/jphp.12004
  13. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  14. Sherman MP, Aeberhard EE, Wong VZ, Griscavage JM, Ignarro LJ. 1993. Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem. Biophys. Res. Commun. 191: 1301-1308. https://doi.org/10.1006/bbrc.1993.1359
  15. Royall JA, Ischiropoulos H. 1993. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular $H_2O_2$ in cultured endothelial cells. Arch. Biochem. Biophys. 302: 348-355. https://doi.org/10.1006/abbi.1993.1222
  16. Jung HJ, Cho YW, Lim HW, Choi H, Ji DJ, Lim CJ. 2013. Anti-inflammatory, antioxidant, anti-angiogenic and skin whitening activities of Phryma leptostachya var. asiatica Hara extract. Biomol. Ther. 21: 72-78. https://doi.org/10.4062/biomolther.2012.059
  17. Elahi MM, Kong YX, Matata BM. 2009. Oxidative stress as a mediator of cardiovascular disease. Oxid. Med. Cell. Longev. 2: 259-269. https://doi.org/10.4161/oxim.2.5.9441
  18. Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB. 2012. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid. Redox Signal. 16: 1295-1322. https://doi.org/10.1089/ars.2011.4414
  19. Haiyan G, Lijuan H, Shaoyu L, Chen Z, Ashraf MA. 2016. Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China. Saudi J. Biol. Sci. 23: 524-530. https://doi.org/10.1016/j.sjbs.2016.02.020
  20. Desta KT, Kim GS, Kim YH, Lee WS, Lee SJ, Jin JS, et al. 2016. The polyphenolic profiles and antioxidant effects of Agastache rugosa Kuntze (Banga) flower, leaf, stem and root. Biomed. Chromatogr. 30: 225-231. https://doi.org/10.1002/bmc.3539
  21. Oh HM, Kang YJ, Lee YS, Park MK, Kim SH, Kim HJ, et al. 2006. Protein kinase G-dependent heme oxygenase-1 induction by Agastache rugosa leaf extract protects RAW264.7 cells from hydrogen peroxide-induced injury. J. Ethnopharmacol. 103: 229-235. https://doi.org/10.1016/j.jep.2005.08.030
  22. Oh HM, Kang YJ, Kim SH, Lee YS, Park MK, Heo JM, et al. 2005. Agastache rugosa leaf extract inhibits the iNOS expression in ROS 17/2.8 cells activated with TNF-alpha and IL-1beta. Arch. Pharm. Res. 28: 305-310. https://doi.org/10.1007/BF02977797
  23. Lee HS, Kim MR, Park Y, Park HJ, Chang UJ, Kim SY, et al. 2012. Fermenting red ginseng enhances its safety and efficacy as a novel skin care anti-aging ingredient: in vitro and animal study. J. Med. Food. 15: 1015-1023. https://doi.org/10.1089/jmf.2012.2187
  24. Chen YS, Liou HC, Chan CF. 2013. Tyrosinase inhibitory effect and antioxidative activities of fermented and ethanol extracts of Rhodiola rosea and Lonicera japonica. The Scientific World Journal 2013: 612739.
  25. Harini PM, Anegundi RT. 2010. Efficacy of a probiotic and chlorhexidine mouth rinses: a short-term clinical study. J. Indian Soc. Pedod. Prev. Dent. 28: 179-182. https://doi.org/10.4103/0970-4388.73799
  26. Shin YK, Son HU, Kim JM, Heo JC, Lee SH, Kim JG. 2015. Cinnamomum cassia bark produced by solid-state fermentation with Phellinus baumii has the potential to alleviate atopic dermatitisrelated symptoms. Int. J. Mol. Med. 35: 187-194. https://doi.org/10.3892/ijmm.2014.2006
  27. Miyazaki K, Hanamizu T, Iizuka R, Chiba K. 2003. Bifidobacteriumfermented soy milk extract stimulates hyaluronic acid production in human skin cells and hairless mouse skin. Skin Pharmacol. Appl. Skin Physiol. 16: 108-116. https://doi.org/10.1159/000069031
  28. Hsu MF, Chiang BH. 2009. Stimulating effects of Bacillus subtilis natto-fermented Radix Astragali on hyaluronic acid production in human skin cells. J. Ethnopharmacol. 125: 474-481. https://doi.org/10.1016/j.jep.2009.07.011

Cited by

  1. LPS로 유도된 Raw 264.7 cell에서 Lactobacillus plantarum 발효가 층꽃나무(Caryopteris incana) 에탄올 추출물의 염증반응에 미치는 영향 vol.61, pp.2, 2017, https://doi.org/10.3839/jabc.2018.021
  2. Anti-Inflammatory, Barrier-Protective, and Antiwrinkle Properties of Agastache rugosa Kuntze in Human Epidermal Keratinocytes vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/1759067
  3. Anti-Inflammatory Effects and Their Correlation with Microbial Community of Shindari, a Traditional Jeju Beverage vol.6, pp.3, 2017, https://doi.org/10.3390/fermentation6030087