DOI QR코드

DOI QR Code

Risk Analysis of Ammonia Leak in the Refrigeration Manufacturing Facilities

냉동제조 시설의 암모니아 누출사고 위험 분석

  • Kang, Su-Jin (Dept. of Environment Technology and Safety Technology Convergence, Inha University) ;
  • Lee, Ik-Mo (Dept. of Chemistry, Inha University) ;
  • Moon, Jin-Young (Dept. of Environment Technology and Safety Technology Convergence, Inha University) ;
  • Chon, Young-Woo (Dept. of Environment Technology and Safety Technology Convergence, Inha University)
  • 강수진? (인하대학교 환경.안전융합전공) ;
  • 이익모 (인하대학교 화학과) ;
  • 문진영 (인하대학교 환경.안전융합전공) ;
  • 천영우 (인하대학교 환경.안전융합전공)
  • Received : 2016.06.29
  • Accepted : 2017.02.10
  • Published : 2017.02.28

Abstract

Recently, ammonia leak occurred frequently in the domestic refrigeration manufacturing facilities. Ammonia caused great damage to the environment and human health in the event of an accident as combustible gases and toxic gases. After considering the types of ammonia accidents of domestic refrigeration manufacturing facilities and selected accident scenarios and to analyze the risk analysis through Impact range estimates and frequency analysis and there was a need to establish measures to minimize accident damage. In this study, depending on the method of analysis quantitative risk assessment we analyzed the risk of the receiver tank of ammonia system. Scenario analysis conditions were set according to the 'Technical guidelines for the selection of accident scenario' under the chemicals control act and 'Guidelines for chemical process quantitative risk analysis' of center for chemical process safety. The risk estimates were utilized for consequence analysis and frequency analysis by SAFETI program of DNV, event tree analysis methodology and part count methodology. The individual risk of ammonia system was derived as 7.71E-04 / yr, social risk were derived as 1.17E-03 / yr. The derived risk was confirmed to apply as low as reasonably practicable of the national fire protection association and through risk calculation, it can be used as a way to minimize accidents ammonia leakage accident damage.

국내 냉동제조시설에서 암모니아 누출사고가 여전히 발생하고 있음을 볼 수가 있다. 암모니아는 가연성가스 및 독성가스이므로 사고 발생할 때 인체와 생태계에 큰 피해를 일으킬 수 있다. 국내 냉동제조시설의 암모니아 사고유형을 파악한 후 사고시나리오를 선정하여 피해범위를 산정하고 사고 빈도와 위험도를 분석하여 사고 피해를 최소화하는 대책 수립이 필요하다. 본 연구에서는 정량적 위험성 평가(QRA: quantitative risk assessment)의 분석 방법에 따라 암모니아 냉동시스템의 리시버 탱크에 대한 위험도를 분석하였다. 시나리오 분석 조건은 화학물질관리법에서 정하는 '사고시나리오 선정에 관한 기술지침' 및 미국 화학공정안전센터(CCPS: center for chemical process safety)의 가이드라인에 따라 정하였다. DVN사의 SAFETI 프로그램을 활용하여 시나리오에서 선정된 모든 사고 영향범위를 산정하고 빈도 분석을 통하여 리시버 탱크에 대한 위험도를 도출하였다. 빈도 값은 사건수 분석(ETA: event tree analysis)기법과 Part count 기법을 활용하였다. 연구 결과 암모니아 냉동시스템의 개인적 위험도는 7.71E-04/yr으로 도출되었으며, 사회적 위험도 1.17E-03/yr으로 도출되었다. 도출된 위험도는 국제 화재방지협회 (NFPA: national fire protection association)의 ALARP (as low as reasonably practicable) 범위를 적용하여 위험도의 적합성을 확인하였으며, 본 연구에서 제안한 위험도 산정 방법이 사고 피해 최소화 방안을 모색하는데 활용된다면 보다 좋은 결과가 도출될 것으로 판단된다.

Keywords

References

  1. Ju, H. S., Lee, Y. S., Im, O. J., and Yu, J. M., "Through a risk assessment of chemicals spills industrial complex environmental impact assessment studies Improvement", Korea Environment Institute, (2013)
  2. National Institute Chemical Safety, "Chemical Safety and Hazard status", (2014)
  3. Ministry of Trade, Industry and Energy, "Gas Safety Management" , (2014)
  4. Park, S. W., and Jeong, S. H., "Damage and evacuation distance range Prediction of Ammonia leak in the refrigeration system", Theory and Application of Chemical Engineering, Vol 21, No. 1, (2015)
  5. GAPS Guidelines, "AMMONIA HAZARDS", A Publication of Global Asset Protection Services LLC,( 2015)
  6. National Institute Chemical Safety, "Technical guidelines for selecting accident scenarios", http://nics.me.go.kr/, (2014)
  7. Centre for Chemical Process Safety (CCPS), "Guidelines for Chemical Process Quantitative Risk Analysis", American Institute of Chemical Engineers, New York, 2nd Edition, (2000)
  8. Louvar, J.F., and Louvar, B.D., "Health and Environmental Risk Analysis: Fundamentals with Applications", (1998)
  9. CCPS, "Guidelines for Consequence Analysis of Chemical Releases",WILEY, (1999)
  10. Seong, D. H., "A Study on the way of creating hazard Risk Contour facilities", Hoseo University, (2012)
  11. International Association of Oil & Gas Producers, "Process release frequencies, Report No. 434-1, Risk Assessment Data Directory of Oil & Gas Producers", OGP, (2010)
  12. Committee for the Prevention of Disaster, "Guidelines for Quantitative Risk Assessment, 'Purple book', CPR 18E" CPR, (2005)
  13. Lees, F.P., "Loss Prevention in the Process Industries", 2nd Edition, Butterworths-Heinemann, (1996)
  14. Gwon, H. M., Seong, D. H., Kim, J. H., Im, D. S., Kim, K. Y., Pyeon, M. W., Moon, I., Go, J. U., Lee , Y. S., and Yoon, I. S., "A great comprehensive risk management system for industrial accidents Study on Construction (IRMS)", Journal of the KIIS, Vol. 18, No. 3, (2003)
  15. NFPA 59A, "Standard for the Production, Storage, and Handling of Liquefied Natural Gas (LNG)," National Fire Protection Association, (2013)

Cited by

  1. Risk Analysis of Transporting Hazardous Substances in Harbor Using Modeling Program vol.32, pp.4, 2018, https://doi.org/10.26748/KSOE.2018.6.32.4.272