DOI QR코드

DOI QR Code

A Study on Bio-Monitoring Systems using Shell Valve Movements of Pacific Oysters (Crassostrea gigas) in response to Abnormal High Water Temperature

이상 고수온에 반응하는 이매패류 참굴(Crassostrea gigas)의 패각운동을 활용한 생물모니터링시스템 연구

  • Received : 2017.01.26
  • Accepted : 2017.02.25
  • Published : 2017.02.28

Abstract

This study contains research on a bio-monitoring system (BMS) capable of detecting abnormal high water temperatures, the shell valve movements (SVMs) of Pacific oysters (Crassostrea gigas), which were measured at four different temperature (5, 10, 20 and $30^{\circ}C$) under laboratory conditions. All the Pacific oysters were kept under fasting conditions for 3 days to prevent the influence of food and excretions before the onset of the experiments. SVMs did not detect at $5^{\circ}C$. However, SVMs increased with an increase in temperature (at $10^{\circ}C$ : $6.31{\pm}2.18times/hr$ and at $20^{\circ}C$: $22.0{\pm}10.0times/hr$). At $30^{\circ}C$, SVMs were divided into two groups: those with no SVMs as at $5^{\circ}C$ and those with SVMs similar to conditions at $20^{\circ}C$($23.9{\pm}9.35times/hr$). This indicates oyster shells maintain a closed condition due to a decrease in metabolism at $30^{\circ}C$, although some Pacific oysters had active SVMs due to an increase in metabolism. If a BMS using the SVM status of Pacific oysters was installed to monitor abnormal high water around oyster farms, early warning levels and serious alerts might be made available more rapidly for SVMs of more than ca. 30 times/hr and closing conditions in a matter of hours, respectively. Therefore, a BMS using the SVMs of Pacific oysters might be an effective early warning system for abnormal high water temperatures.

이상 고수온을 감지하기 위한 생물모니터링 시스템(BMS) 연구를 위해, 4단계의 수온(5, 10, 20와 $30^{\circ}C$)에서 참굴 패각운동을 측정하였다. 모든 참굴은 실험시작 전에 3일 동안 절식을 통하여, 먹이섭이 및 배출에 따른 패각운동의 요인을 제거하였다. $5^{\circ}C$ 실험구에서는 패각운동이 관찰되지 않았지만, 수온의 증가와 함께 패각운동은 증가하였다($10^{\circ}C$: $6.31{\pm}2.18times/hr$, $20^{\circ}C$: $22.0{\pm}10.0times/hr$). $30^{\circ}C$에서는 $5^{\circ}C$와 같이 패각운동이 전혀 보이지 않았던 실험구와 $20^{\circ}C$와 유사한 패각운동이 실험구가 나타났다. 이는 $30^{\circ}C$이상에서도 $20^{\circ}C$와 같은 신진대사를 보이는 개체군이 있었으나, 대부분이 신진대사의 활력의 감소에 기인하여 폐각상태가 지속되는 것으로 나타났다. 따라서 참굴 양식장에 고수온 감지를 위한 참굴 패각운동 BMS를 설치한다면, 경계단계는 빠른 패각운동(약 30.0회/hr 이상)일 때, 심각단계는 수시간 이상 폐각상태일 때, 조기경보(early warning)를 내릴 수 있을 것이다. 따라서 참굴 패각운동을 활용한 BMS는 이상고수온의 조기경보에 대하여 효과적으로 활용이 가능할 것으로 판단된다.

Keywords

References

  1. Almada-Villela, P. C., J. Davenport and L. D. Gruffydd(1982), The effects of temperature on the shell growth of young Mytilus edulis L., Journal of Experimental Marine Biology and Ecology, Vol. 59, No. 2, pp. 275-288. https://doi.org/10.1016/0022-0981(82)90121-6
  2. Ameyaw-Akumfi, C. and E. Naylor(1987), Temporal patterns of shell-gape in Mytilus edulis, Marine Biology, Vol. 95, No. 2, pp. 237-242. https://doi.org/10.1007/BF00409011
  3. Anestis, A., A. Lazou, H. O. Pörtner and B. Michaelidis (2007), Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, Vol. 293, No. 2, pp. R911-R921. https://doi.org/10.1152/ajpregu.00124.2007
  4. Borcherding, J.(1992), Another early warning system for the detection of toxic discharges in the aquatic environment based on valve movements of the freshwater mussel Dreissena polymorpha, Limnologie Aktuell.
  5. Borcherding, J.(2006), Ten years of practical experience with the Dreissena-Monitor, a biological early warning system for continuous water quality monitoring, Hydrobiologia, Vol. 556, No. 1, pp. 417-426. https://doi.org/10.1007/s10750-005-1203-4
  6. Clarke, A.(1998), Temperature and energetics: an introduction to cold ocean physiology, Cold ocean physiology, Vol. 66, pp. 3-32.
  7. Curtis, T. M., R. Williamson and M. H. Depledge(2000), Simultaneous, long-term monitoring of valve and cardiac activity in the blue mussel Mytilus edulis exposed to copper, Marine Biology, Vol. 136, No. 5, pp. 837-846. https://doi.org/10.1007/s002270000297
  8. Fry, F. E. J.(1971), The effect of environmental factors on the physiology of fish., Fish physiology, Vol. 6, pp. 1-98.
  9. Haberkorn, H., D. Tran, J. C. Massabuau, P. Ciret, V. Savar and P. Soudant(2011), Relationship between valve activity, microalgae concentration in the water and toxin accumulation in the digestive gland of the Pacific oyster Crassostrea gigas exposed to Alexandrium minutum, Marine Pollution Bulletin, Vol. 62, No. 6, pp. 1191-1197. https://doi.org/10.1016/j.marpolbul.2011.03.034
  10. Jeon, J. Y., S. Y. Moon and S. J. Oh(2016), Bio-monitoring System using Shell Valve movements of Pacific Oyster (Crassostrea gigas) (Detecting Abnormal Shell Valve Movements Under Hypoxia Water using Hall Element Sensor), Journal of Marine Life Science, Vol. 1, No. 1, pp. 25-30.
  11. Jgrgensen, C. B(1990). Bivalve filter feeding: hydrodynamics, bioenergetics, physiology and ecology, Olsen & Olsen.
  12. Kang, C. K., M. S. Park, W. C. Lee, W. J. Choi and P. Y. Lee(2000), Seasonal variations in condition, reproductive activity, and biochemical composition of the Pacific oyster, Crassostrea gigas (Thunberg), in suspended culture in two coastal bays of Korea, Journal of Shellfish Research, Vol. 19, No. 2, pp. 771-778.
  13. Kim, K. S. and P. Chin(2002), Influence of Increased Temperature on the Standard Metabolism in the Marine Bivalves Acclimated to Seasonal Water Temperature-I. Effects of Acclimation Temperature, Korean Journal of Fisheries and Aquatic Sciences, Vol. 35, No. 5, pp. 463-468. https://doi.org/10.5657/kfas.2002.35.5.463
  14. Kim, C. W., H. J. Oh and Y. K. Shin(2013), Effects of Water Temperature on The Mass Mortality of Pacific Oyster, Crassostrea gigas in Gamak Bay, The Korean Journal of Malacology, Vol. 29, No. 3, pp. 245-250. https://doi.org/10.9710/kjm.2013.29.3.245
  15. Kobayashi, M., E. E. Hofmann, E. N. Powell, J. M. Klinck and K. Kusaka(1997), A population dynamics model for the Japanese oyster, Crassostrea gigas, Aquaculture, Vol. 149, No. 3-4, pp. 285-321.
  16. Kozuki, Y., R. Yamanaka, T. Tsuyama, R. Kamogari, Y. Yamashita and M. Matushige(2015), Study on behavior Ruditapes philippinarum in hypoxic and anoxic water, Japan Society of Civil Engineers, Vol. 71, No. 2, pp. 1363-1368.
  17. Langton, R. W.(1977), Digestive rhythms in the mussel Mytilus edulis, Marine Biology, Vol. 41, No. 1, pp. 53-58. https://doi.org/10.1007/BF00390581
  18. Lee, B. K. and P. Chin(1981), Effects of body size, temperature-salinity and starvation on the rates of filtration in Crassostrea gigas and Mytilus edulis, Institute of Marine Sciences, National Fisheries University of Busan, Vol. 13, pp. 37-41.
  19. Lee, S. E. and H. C. Shin(2015), The Influence of Water Temperature on Filtration Rates and Ingestion Rates of the Blue Mussel, Mytilus galloprovincialis (Bivalvia), The Korean Journal of Malacology, Vol. 31, No. 3, pp. 203-212. https://doi.org/10.9710/kjm.2015.31.3.203
  20. Loosanoff, V. L.(1939), Effect of temperature upon shell movements of clams, Venus mercenaria (L.), Biological Bulletin, Vol. 76, No. 2, pp. 171-182. https://doi.org/10.2307/1537857
  21. Muranaka, M. S. and J. E. Lannan(1984), Broodstock management of Crassostrea gigas: environmental influences on broodstock conditioning, Aquaculture, Vol. 39, No. 1, pp. 217-228. https://doi.org/10.1016/0044-8486(84)90267-9
  22. Nagai, K.(2006), Research on means of alleviating damage by Heterocapsa circularisquama red tides and reddening adductor disease, causes of the mass mortalities of Japanese pearl oysters (Pinctada fucata martensii), Diss. PhD Dissertation, Kyushu University, Kyushu.
  23. Nagai, K., T. Honjo, J. Go, H. Yamashita and S. J. Oh(2006), Detecting the shellfish killer Heterocapsa circularisquama (Dinophyceae) by measuring bivalve valve activity with a Hall element sensor, Aquaculture, Vol. 255, pp. 395-401. https://doi.org/10.1016/j.aquaculture.2005.12.018
  24. Nagasaki, K., Y. Tomaru, K. Naganishi, N, Hata, N. Katanozaka and M. Yamaguchi(2004), Dynamics of Heterocapsa circularisquama (Dinophyceae) and its viruses in Ago Bay, Japan, Aquatic microbial ecology, Vol. 34, No. 3, pp. 219-226. https://doi.org/10.3354/ame034219
  25. Newell, R. C. and G. M. Branch(1980), The influence of temperature on the maintenance of metabolic energy balance in marine invertebrates, Advances in marine biology, Vol. 17, pp. 329-396.
  26. Ngo, T. T., S. G. Kang and K. S. Park(2002), Seasonal changes in reproductive condition of the Pacific oysters, Crassostrea gigas (Thunberg) from suspended culture in Gosung Bay, Korea, Korean Journal of Environmental Biology, Vol. 20, No. 3, pp. 268-275.
  27. Oh, B. S., Q. T. Jo, J. Y. Lee, M. G. Kwon and C. Lee(2011), A Study on the Mortality of Korean Scallop, Patinopecten yessoensis Affected Critical Changed Water Temperature at Indoor Tanks, The Korean Journal of Malacology, Vol. 27, No. 3, pp. 193-198. https://doi.org/10.9710/kjm.2011.27.3.193
  28. Oh, S. J., J. H. Lee, and S. Y. Kim(2013), Bio-Monitoring System Using Shell Valve Movements of Pacific Oyster (Crassostrea gigas)-I. Detecting Abnormal Shell Valve Movements Under Low Salinity Using a Hall Element Sensor, Journal of the Korean Society for Marine Environment & Energy, Vol. 16, No. 2, pp. 138-142. https://doi.org/10.7846/JKOSMEE.2013.16.2.138
  29. Ortmann, C. and M. K. Grieshaber(2003), Energy metabolism and valve closure behaviour in the Asian clam Corbicula fluminea, Journal of Experimental Biology, Vol. 206, No. 22, pp. 4167-4178. https://doi.org/10.1242/jeb.00656
  30. Rao, K. P.(1954), Tidal rhythmicity of rate of water propulsion in Mytilus, and Its modifiability by transplanation, The Biological Bulletin, Vol. 106, No. 3, pp. 353-359. https://doi.org/10.2307/1538769
  31. Shin, H. C., J. H. Lee, H. J. Jeong, J. S. Lee, J. J. Park and B. H. Kim(2009), The influence of water temperature and salinity on filtration rates of the hard clam, Gomphina veneriformis (Bivalvia), The Korean Journal of Malacology, Vol. 25, No. 2, pp. 161-171.
  32. Sow, M., G. Durrieu, L. Briollais, P. Ciret and J. C, Massabuau(2011), Water quality assessment by means of HFNI valvometry and high-frequency data modeling, Environmental monitoring and assessment, Vol. 182, No. 1-4, pp. 155-170. https://doi.org/10.1007/s10661-010-1866-9
  33. Suzuki, K., T. Yurimoto and Y. Koshishi(2011), Valve movement of the pen shell Atrina lischkeana in relation to burrowing and creep-out behavior, Fisheries Engineering, Vol. 48, No. 1, pp. 19-24.
  34. Thompson, R. J., D. R. Livingstone and A. D. Zwaan(1980), Physiological and biochemical aspects of the valve snap and valve closure responses in the giant scallop Placopecten magellanicus, Journal of comparative physiology, Vol. 137, No. 2, pp. 97-104. https://doi.org/10.1007/BF00689207
  35. Tran, D., H. Haberkorn, P. Soudant, P. Ciret and J. C. Massabuau(2010), Behavioral responses of Crassostrea gigas exposed to the harmful algae Alexandrium minutum, Aquaculture, Vol. 298, No. 3, pp. 338-345. https://doi.org/10.1016/j.aquaculture.2009.10.030
  36. Way, C. M., D. J. Hornbach, C. A. Miller-Way, B. S. Payne and A. C. Miller(1990), Dynamics of filter feeding in Corbicula fluminea (Bivalvia: Corbiculidae), Canadian Journal of Zoology, Vol. 68, No. 1, pp. 115-120. https://doi.org/10.1139/z90-016

Cited by

  1. Bio-monitoring by Shell Valve Movements (SVMs) of Pacific Oyster (Crassostrea gigas) on the Harmful Red Tide Organisms vol.21, pp.1, 2018, https://doi.org/10.7846/JKOSMEE.2018.21.1.23
  2. 저염수에서 이매패류 참굴(Crassostrea gigas)의 패각운동 vol.23, pp.6, 2017, https://doi.org/10.7837/kosomes.2017.23.6.684
  3. 참굴, Crassostrea gigas의 패각운동을 이용한 유독와편모조 Alexandrium 속의 모니터링 연구 vol.18, pp.11, 2017, https://doi.org/10.5762/kais.2017.18.11.778