DOI QR코드

DOI QR Code

Analysis Study on the Damage of Crack Happening with the Bending at CFRP Plate due to Stacking Angle

적층각도에 따른 CFRP 평판에서의 굽힘으로 발생한 크랙 파손에 관한 해석적 연구

  • Hwang, Gue-wan (Department of Mechanical & Automotive Engineering, Graduate School, Kongju University) ;
  • Cho, Jae-ung (Division of Mechanical & Automotive Engineering, Kongju University)
  • 황규완 (공주대학교 대학원 기계공학과) ;
  • 조재웅 (주대학교 기계자동차 공학부)
  • Received : 2017.01.03
  • Accepted : 2017.03.20
  • Published : 2017.03.28

Abstract

This study investigates the bending stress, shear stress and deformation energy happening at the inner fiber structure when the bending moment is applied to he specimen with flat shape composed of carbon fiber. As CFRP is composed of innumerable fibers with multi-axes, the stress under bending condition can be effectively distributed. Theses stresses is shown to increase again at the starting point as this angle of $60^{\circ}$. Therefore, the condition at the stacking angle of $60^{\circ}$ is seen to become most adequate under the state where the bending stress happens. On the basis of this study result, the damage property by the bending at the plate due to stacking angle was examined through the analytic approach. it is thought that this study can be devoted to the safe design for damage prevention and durabilty improvement. Also, the esthetic sense can be shown as the designed factor of shape with flat plate is grafted onto the convergence technique.

본 논문은 탄소섬유로 구성된 평판형태의 시험편에 굽힘 모멘트가 작용할 때 내부의 섬유구조에서 발생되는 굽힘 응력과 전단응력, 변형에너지에 관한 것이다. CFRP는 무수히 많은 섬유가 다축구조를 형성하고 있어 굽힘조건에서 응력을 효과적으로 분산할 수 있다. 이때 적층각도에 따라 다양한 물성을 보이게 되는데, 섬유의 수평방향인 Stacking angle $0^{\circ}$에서부터 수직방향인 $90^{\circ}$에 이르기까지의 결과에 있어, Stacking angle이 증가함에 따라 등가 응력과 전단응력이 점차 줄어들며 $60^{\circ}$를 기점으로 다시 증가함을 보이고 있다. 본 연구결과를 토대로,적층각도에 따른 평판에서의 굽힘으로 인한 파손특성을 해석적 접근을 통해 고찰하였으며, 본연구는 파손방지와 내구성 향상을 위한 안전설계에 기여할 수 있다고 사료된다. 또한 평판 형상으로서의 디자인적 요소를 융합기술에 접목함으로서 그 미적인 감각을 나타낼 수 있다.

Keywords

References

  1. K. W. Kang, "Vibration Fatigue Analysis of Spot Welded Component considering Change of Stiffness due to Fatigue Damage" Journal of the Korea Convergence Society, Vol. 5, No. 1, pp. 1-8, 2014. https://doi.org/10.15207/JKCS.2014.5.1.001
  2. J. U. Cho, "Structure Safety Analysis on Crack Propagation in Compact Tension Specimen", Journal of the Korea Convergence Society, Vol. 5, No. 1, pp. 23-27, 2014. https://doi.org/10.15207/JKCS.2014.5.1.023
  3. Y. J. Jang, K. W. Kang, "Simplified Load Caculation and Structure Test for Scale Down Model of Small Wind Turbine Blade according to IEC 61400-2", Journal of the Korea Convergence Society, Vol. 4, No. 3, pp. 1-5, 2013. https://doi.org/10.15207/JKCS.2013.4.3.001
  4. Y. H. Cho, "Manufacturing convergence simulation system effect for the degree of perfection improvement of the new product", Journal of Digital Convergence, Vol. 13, No. 6, pp. 91-103, 2015. https://doi.org/10.14400/JDC.2015.13.6.91
  5. H. J. Jung, "The Analysis of Data on the basis of Software Test Data", Journal of Digital Convergence, Vol. 13, No. 10, pp. 1-7, 2015. https://doi.org/10.14400/JDC.2015.13.10.1
  6. G. W. Hwang, "A Property of Crack Propagation at the Specimen of CFRP with Layer Angle", Korean Society of Mechanical Technology, Vol. 40, No. 12, pp. 1013-1019, 2016.
  7. T.A. Sebaey, E. Mahdi, "Behavior of pyramidal lattice core sandwich CFRP composites under biaxial compression loading", Composite Structures, Vol. 116, pp. 67-74, May, 2014. https://doi.org/10.1016/j.compstruct.2014.05.014
  8. H. K. Choi and J. U. Cho, "Study on the Fatigue Analysis of DCB Model with Aluminum Foam", Journal of Korean Society of Mechanical Technology, Vol. 14, No. 6, pp. 39-43, 2012.
  9. O. T. Thomsen, W. Rits, D. C. G. Eaton, S. Brown, "PLY DROP-OFF EFFECTS IN CFRP/HONEYCOMB SANDWICH PANELS-THEORY", Composites Science and Technology, Vol. 56, pp. 407-422, 1996. https://doi.org/10.1016/0266-3538(95)00145-X
  10. T.A. Sebaey, E. Mahdi, "Behavior of pyramidal lattice core sandwich CFRP composites under biaxial compression loading", Composite Structures, Vol. 116, pp. 67-74, May, 2014. https://doi.org/10.1016/j.compstruct.2014.05.014
  11. M. Mohamed, S. Anandan, Z. Huo, V. Birman, J. Volz, K. Chandrashekhara, "Manufacturing and characterization of polyurethane based sandwich composite structures", Composite Structures, Vol. 123, pp. 169-179, 2015. https://doi.org/10.1016/j.compstruct.2014.12.042
  12. B. J. Stauder, H. Kerber, P. Schumacher "Foundry sand core property assessment by 3-point bending test evaluation" Journal of Materials Processing Technology, Vol.237, No. 7, pp.188-196, 2016. https://doi.org/10.1016/j.jmatprotec.2016.06.010
  13. J. Cao, K. Cai, Q. Wang, J. Shi, "Damage behavior of a bonded sandwithc beam with corrugated core under 3-point bending", Materials and Design, Vol. 95, No. 4, pp. 165-172, 2016. https://doi.org/10.1016/j.matdes.2016.01.083
  14. O. Zhao, L. Gardner, B. Young, "Bucling of ferritic stainless steel members under combinded axial compression and bending", Journal of Constructional Steel Research, Vol.117, No. 12, pp35-48, 2016. https://doi.org/10.1016/j.jcsr.2015.10.003
  15. V. N. Pilipchuk, R. A. Ibrahim, I. Grace, "Low temperature brittle debond damage under normal compression of sandwich plates: Analytical modeling and experimental validation", Composite Structures, Vol. 98, pp. 24-33, 2013. https://doi.org/10.1016/j.compstruct.2012.10.052