DOI QR코드

DOI QR Code

Evaluation of CPTU Cone Factor of Silty Soil with Low Plasticity Focusing on Undrained Shear Strength Characteristics

저소성 실트지반의 비배수 전단강도 특성을 고려한 CPTU 콘계수 평가

  • Kim, Ju-Hyun (Department of Civil Engineering, Dongshin University)
  • Received : 2017.02.20
  • Accepted : 2017.03.24
  • Published : 2017.03.30

Abstract

Laboratory and in-situ tests were conducted to evaluate the cone factors for the layers with low plasticity containing a lot of silty and sand soils from the west coast (Incheon, Hwaseong and Gunsan areas) and its applicability was evaluated based on these results. The cone factors were evaluated from 19 to 23 based on unconfined compression strengths (qu), from 13 to 13.8 based on simple CU strengths and from 11.6 to 13.1 based on field vane strengths, respectively. The unconfined compression strengths of undisturbed silty soil samples with low plasticity were considerably underestimated due to the change of in-situ residual effective stress during sampling. Half of unconfined compression strength (qu/2) based cone factors of silty soils with low plasticity fluctuated and were approximately 1.8 times higher than simple CU based values of these soils. When evaluating cone factors of these soils, it should be judged overall on the physical properties such as the grain size distribution and soil plasticity and on the fluctuation of the corrected cone resistance and the sleeve friction due to the distribution of sandseam in the ground including pore pressure parameter.

모래 및 실트 함유량이 우세한 서해안 저소성 지반(인천, 화성, 군산)에서 실시된 실내 및 현장시험으로부터 얻어진 비배수전단 강도를 이용하여 피에조콘계수(Nkt)를 분석한 후, 이에 대한 적용성을 평가하였다. 인천, 화성 및 군산지역에서 얻어진 일축압축 강도에 의한 콘계수(Nkt)는 19~23, 간이 CU 강도에 의한 값은 13~13.8, 현장베인강도에 의한 값은 11.6~13.1로 평가되었다. 이는 저소성 실트 지반조건에서 일축압축강도가 과소평가되는 원인에 의한 것으로 간이 CU 강도 적용조건과 비교했을 때 콘계수(Nkt)가 약 1.8배 전후로 커지며 분산되는 경향을 나타냈다. 저소성 실트 지반에서 수행된 CPTU 데이터를 이용하여 콘계수(Nkt)를 평가할 때에는 지반의 입도분포, 액소성한계 등의 물리적 특성, 지층 내의 sandseam 분포 등으로 인한 콘선단저항(qt) 및 주면마찰력(fs)의 불규칙한 분포, 간극수압계수(Bq)를 종합적으로 분석하여 수행하는 것이 바람직할 것으로 판단된다.

Keywords

References

  1. Aas, G., Lacasse, S., Lunne, T. and Hoeg, K. (1986), "Use of in-situ tests for foundation design on clay", Proc. ASCE specialty conference in-situ 86, Use of in-situ tests in geotechnical engineering, Blacksburg, VA, USA, pp.1-30.
  2. ASTM D422 (1990), "Standard test method for particle-size analysis of soils", ASTM International, West Conshohocken, PA.
  3. ASTM D2487 (2000), "Standard practice for classification of soils for engineering purposes (Unified Soil Classification System)", ASTM International, West Conshohocken, PA.
  4. ASTM D4318 (2000), "Standard test methods for liquid limit, plastic limit and plasticity index of soils", ASTM International, West Conshohocken, PA.
  5. ASTM D2166 (2003), "Standard test method for unconfined compressive strength of cohesive soil", ASTM International, West Conshohocken, PA.
  6. ASTM D2578 (2003), "Standard test method for field vane shear test in cohesive soil", ASTM International, West Conshohocken, PA.
  7. ASTM D5778 (2003), "Standard test method for electronic friction cone piezocone penetration testing of soils", ASTM International, West Conshohocken, PA.
  8. Eurocode 7.2 (2007), Geotechnical design-ground investigation and testing, BS EN 1997-2, European Committe for standardization.
  9. Hight, D. W., Boese, R., Butcher, A. P., Clayton, C. R. I. and Smith, P. R. (1992), "Disturbance of the Bothkennar clay prior to laboratory testing", Geotehnique, Vol.42, No.2, pp. 199-217. https://doi.org/10.1680/geot.1992.42.2.199
  10. Jang, I. S., Lee, S. J., Chung, C. K. and Kim, M. M. (2001), "Piezocone factors of Korean clayey soils", 17(6), pp. 15-24.
  11. Kim, S. J., Lee, S. D. and Kim, J. H. (2016), "Evaluation of undrained shear strength for clayey silt with low plasticity from the West coast", Journal of Korean Geotechnical Society, Vol.32, No.8, pp.15-25. https://doi.org/10.7843/KGS.2016.32.8.15
  12. Kim, S. J., Lee, S. D. and Kim, J. H. (2016), "Partial drainage characteristics of clayey silt with low plasticity from the West coast", Journal of Korean Geotechnical Society, Vol.32, No. 9, pp.17-27. https://doi.org/10.7843/KGS.2016.32.9.17
  13. La Rochelle, P., Zebdi, M., Leroueil, S., Tavenas, F. and Virely, D. (1988), "Piezocone tests in sensitive clays of Eastern Canada", Proc. first international symposium on penetration testing, Vol.2, pp.831-841.
  14. Lunne, T., Christoffersen, H. P. and Tjelta, T. I. (1985), "Engineering use of piezocone data in North Sea Clays", Proc. of 11th International Conference on Soil Mechanics and Foundation Engineering, Sanfrancisco, Vol.2, pp.907-912.
  15. Matsuo, M. (1984), "Geotechnical engineering, theory and practice of reliability-based design", Gihodo Syuppan, pp. 28-31.
  16. Park, Y. W., Gu, N. S. and Lee, S. I. (2003), "Estimation of undrained shear strength using piezocone test", Journal of Korean Geotechnical Society, Vol.19, No.6, pp. 169-179.
  17. Park, Y. H., Kim, M. K., Kim, C. D. and Lee, J. H. (2007), "Analysis and Evaluation of CPT cone factor for undrained shear strength estimation of Pusan clay", Journal of Korean Geotechnical Society, Vol.23, No.8, pp.77-85.
  18. Schnaid, F., Lehane, B. M. and Fahey, M. (2004). "Characterisation of unusual geomaterials", Proc. ISC-2 Geotech. Geophys. Site. Charact, Porto, Portugal, pp.49-73.
  19. Tanaka, H., Sakakibara, M., Goto, K., Suzuki, K. and Fukazawa, T. (1992), "Properties of Japan normally Consolidated marine clays obtained from static piezocone penetration test", Report of the port and harbour research institute, Vol.31, No.4, pp. 61-92.
  20. Tanaka, H. and Tanaka, M. (1996), "A site investigation method using cone penetration and dilatometer tests", Technical note of the port and harbour research institute ministry of transport, Japan, No.837, pp.4-52.
  21. Tanaka, H., Tanaka, M. and Shiwakoti, D. R. (2001), "Characteristics of soils with low plasticity: intermediate soil from Ishinomaki, Japan and lean clay from Drammen, Norway", Soils and Foundations, Vol.41, No.1, pp.83-96. https://doi.org/10.3208/sandf.41.83
  22. Tsuchida, T. and Mizukami, J. (1991), "Advanced method for determining strength of clay", Proc. Int. Conf. Geotech. Eng., Coastal Dev. Yokohama, Japan, Vol.1, pp.105-110.

Cited by

  1. CPTU 데이터를 이용한 저소성 실트 지반의 부분배수 강도 평가 vol.16, pp.2, 2017, https://doi.org/10.12814/jkgss.2017.16.2.055
  2. 국내 해성 점성토의 강도증가율 평가 vol.16, pp.3, 2017, https://doi.org/10.12814/jkgss.2017.16.3.031
  3. 국내 해성점토 지반에 대한 선행압밀압력 평가방법의 적용성 vol.16, pp.4, 2017, https://doi.org/10.12814/jkgss.2017.16.4.093