DOI QR코드

DOI QR Code

Enhanced NH3-SCR Activity of V/TiO2 Catalyst Prepared by Various Ball Mill Method

다양한 Ball Mill Method에 의해 제조된 V/TiO2 촉매의 NH3-SCR 활성 증진연구

  • Kim, Dong Ho (Department of Environmental Energy Systems Engineering, Graduate school of Kyonggi University) ;
  • Seo, Phill Won (Department of Research & Development, Ceracomb Co., Ltd.) ;
  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Kyonggi University)
  • 김동호 (경기대학교 일반대학원 환경에너지공학과) ;
  • 서필원 ((주)세라컴 기술연구소) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Received : 2017.01.06
  • Accepted : 2017.02.08
  • Published : 2017.03.31

Abstract

In this study, the selective catalytic reduction (SCR) for NOx removal was investigated in the temperature range of $150{\sim}400^{\circ}C$. XRD, BET and XPS analyses to determine the structural properties and valence state characteristics of the catalyst were performed. Various ball mill method were shown to a difference in activity at a low temperature below $250^{\circ}C$. Based on the catalyst with the highest denitrification efficiency, the ball mill time was the best result at 3 h. As a result of XPS analysis, the presence of the non-stoichiometric vanadium species and the increase of the number of atoms were attributed to a positive effect in the SCR reaction. it was confirmed that the correlation between the amount of lattice oxygen and the denitrification efficiency through the $O_2$ on-off experiment, and it was in a proportional relationship to each other.

본 연구에서는, $150{\sim}400^{\circ}C$ 영역에서 $NO_x$를 제어하기 위한 ball mill 기법을 사용한 선택적 환원촉매(SCR)의 연구를 수행하였다. 제조된 촉매들의 구조적 특성 및 산화가 특성을 확인하기 위하여 XRD, BET, XPS 분석을 수행하였다. 다양한 ball mill 기법에 의해 제조된 촉매는 $250^{\circ}C$ 이하의 온도구간에서의 활성의 차이를 보였다. 이중 가장 우수한 탈질효율을 갖는 촉매를 기준으로, ball mill 시간이 3시간일 때 가장 높은 활성을 나타내었다. XPS 분석 결과, vanadium의 비 화학양론종의 존재 및 원자 수 증가가 활성증진에 유리하게 작용한 것으로 나타났다. 또한 $O_2$ on-off 실험을 통해 격자산소량의 양과 탈질 효율과의 상관관계를 나타내었고, 이는 서로 비례관계에 있음을 확인하였다.

Keywords

References

  1. Park, S. U., and Lee, Y. H., "Spatial Distribution of Wet Deposition of Nitrogen in South Korea," Atmos. Environ., 36, 619-628 (2002). https://doi.org/10.1016/S1352-2310(01)00489-7
  2. Trong On, D., Kapoor, M. P., Thibault, E., Gallot, J. E., Lemay, G., and Kaliaguine, S., "Influence of High-Energy Ball Milling on the Physico-Chemical and Catalytic properties of Titanium Silicalite TS-1," Microporous Mesoporous Mater., 20, 107-118 (1998). https://doi.org/10.1016/S1387-1811(97)00002-4
  3. Oelerich, W., Klassen, T., and Bormann, R., "Comparison of the Catalytic Effects of V, $V_2O_5$, VN, and VC on the Hydrogen Sorption of Nanocrystalline Mg," J. Alloy. Compd., 322, L5-L9 (2001). https://doi.org/10.1016/S0925-8388(01)01173-2
  4. Gajovica, A., Stubicarb, M., Ivandaa, M., and Furica, K., "Raman Spectroscopy of Ball-Milled $TiO_2$," J. Mol. Struct., 563-564, 315-320 (2001). https://doi.org/10.1016/S0022-2860(00)00790-0
  5. Dutta, H., and Pradhan, S. K., "Microstructure Characterization of High Energy Ball-Milled Nanocrystalline $V_2O_5$ by Rietveld Analysis," Mater. Chem. Phys., 77, 868-877 (2003). https://doi.org/10.1016/S0254-0584(02)00169-4
  6. Hu, J., Qin, H., Sui, Z., and Lu, H., "Characteristic of Mechanically Milled $TiO_2$ Powders," Mater. Lett., 53, 421-424 (2002). https://doi.org/10.1016/S0167-577X(01)00518-3
  7. Ettireddya, P. R., Ettireddya, N., Mamedovb, S., Boolchandc, P., and Smirniotisa, P. G., "Surface Characterization Studies of $TiO_2$ Supported Manganese Oxide Catalysts for Low Temperature SCR of NO with $NH_3$," Appl. Catal. B: Environ., 76, 123-134 (2007). https://doi.org/10.1016/j.apcatb.2007.05.010
  8. Kamolphop, U., Taylor, S. F. R., Breen, J. P., Burch, R., Delgado§, J. J., Chansai, S., Hardacre, C., Hengrasmee, S., and James, S. L., "Low-Temperature Selective Catalytic Reduction (SCR) of NOx with n-Octane Using Solvent-Free Mechanochemically Prepared Ag/$Al_2O_3$ Catalysts," Appl. Catal., 1 (10), 1257-1262 (2011).
  9. Wong, G. S., Kragten, D. D., and Vohs, J. M., "Temperature-Programmed Desorption Study of the Oxidation of Methanol to Formaldehyde on $TiO_2$(110)-Supported Vanadia Monolayers," Surf. Sci., 452, L293-L297 (2000). https://doi.org/10.1016/S0039-6028(00)00396-4
  10. Cristalloa, G., Roncarib, E., Rinaldoa, A., and Trifiroa, F., "Study Of Anatase-Rutile Transition Phase in Monolithic Catalyst $V_2O_5$/$TiO_2$ and $V_2O_5$-$WO_3$/$TiO_2$," Appl. Catal. A: Gen., 209, 249-256 (2001). https://doi.org/10.1016/S0926-860X(00)00773-0
  11. Bosch, H., and Janssen, F., "Catalytic Reduction of Nitrogen Oxides. A Review on the Fundamentals and Technology," Catal. Today, 2, 369 (1988). https://doi.org/10.1016/0920-5861(88)80002-6
  12. Cheng, K., Liu, J., Zhang, T., Li, J., Zhao, Z., Wei, Y., Jiang, G., and Duan, A., "Effect of Ce Doping of $TiO_2$ Support on $NH_3$-SCR Activity over $V_2O_5$-$WO_3$/$CeO_2$-$TiO_2$ Catalyst," J. Environ. Sci., 10, 2106-2113 (2014)
  13. Bukhtiyarov V. I., (RU-1), "XPS and SIMS Characterization," Catal. Today, 56, 403-413 (2000). https://doi.org/10.1016/S0920-5861(99)00300-4
  14. Wang, Q., and Madix, R. J., "Preparation and Reactions of $V_2O_5$ Supported on $TiO_2$(110)," Surf. Sci., 474, L213-L216 (2001). https://doi.org/10.1016/S0039-6028(00)01056-6
  15. Kobayashi, M., Kuma, R., Masaki, S., and Sugishima, N., "$TiO_2$-$SiO_2$ and $V_2O_5$/$TiO_2$-$SiO_2$ Catalyst: Physico-Chemical Characteristics and Catalytic Behavior in Selective Catalytic Reduction of NO by $NH_3$," Appl. Catal. B: Environ., 60, 173-179 (2005). https://doi.org/10.1016/j.apcatb.2005.02.030
  16. Boningari, T., Koirala, R., and Sminiotis, P. G., "Low-temperature Catalytic Reduction of NO by $NH_3$ over Vanadia-Based Nanoparticles Prepared by Flame-Assisted Spray Pyrolysis: Influence of various supports," Appl. Catal. B: Environ., 140-141, 289-298 (2013). https://doi.org/10.1016/j.apcatb.2013.04.033
  17. Moulder, J. F., Stickle, W. F., Sobol, P. E., Bomben, K. D., and Perkin-Elmer Corporation, "Handbook of X-ray Photoelectron Spectroscopy," USA (1992).

Cited by

  1. La2O3가 첨가된 Pd/TiO2 촉매의 개발 및 H2 상온산화 반응에서의 성능 향상 연구 vol.31, pp.6, 2017, https://doi.org/10.14478/ace.2020.1087