DOI QR코드

DOI QR Code

Trend on Development of Low Molecular Weight Organosilicone Surfactants (Part 1)

저분자 유기실리콘 계면활성제의 개발 동향 (제1보)

  • Rang, Moon Jeong (Department of Pharmaceutical Engineering, Pai Chai University)
  • 랑문정 (배재대학교 제약공학과)
  • Received : 2017.02.14
  • Accepted : 2017.03.17
  • Published : 2017.03.30

Abstract

Organosilicone-based surfactants consist of hydrophobic organosilicone groups coupled to hydrophilic polar groups. Organosilicone surfactants have been widely used in many industrial fields starting from polyurethane foam to construction materials, cosmetics, paints & inks, agrochemicals, etc., because of their low surface tension, lubricity, spreading, water repellency and thermal and chemical stability, resulted from the unique properties of organosilicone. Especially, trisiloxane surfactants, having low molecular weight organosilicone as hydrophobe, exhibit low surface tension and excellent wettability and spreadability, leading to their applications as super wetter/super spreader, but have the disadvantage of vulnerability to hydrolysis. A variety of trisiloxane surfactant structures are required to provide the functional improvement and the defect resolution for reflecting the necessities in the various applications. This review covers the synthetic schemes of reactive trisiloxanes as hydrophobic siloxane backbones, the main reaction schemes, such as hydrosilylation reaction, for coupling reactive trisiloxanes to hydrophilic groups, and the synthetic schemes of the main trisiloxane surfactants including polyether-, carbohydrate-, gemini-, bolaform-, double trisiloxane-type surfactants.

유기실리콘 계면활성제는 소수성 유기실리콘 그룹에 친수성 극성 그룹이 결합되어 있다. 유기실리콘의 독특한 특성으로 인하여 유기실리콘 계면활성제는 낮은 계면장력, 윤활성, 퍼짐성, 발수성, 열 안정성, 화학적 안정성 때문에 폴리우레탄 폼, 건설재료, 화장품, 페인트잉크, 농약 등 많은 산업분야에 사용되고 있다. 특히 저분자 유기실리콘을 소수기로 한 트리실록산 계면활성제는 낮은 표면장력과 우수한 습윤/퍼짐성 때문에 super wetter/super spreader로서 활용되고 있으나 가수분해에 취약한 단점도 가지고 있다. 트리실록산 계면활성제의 기능향상과 단점개선 등 응용분야에서의 요구사항을 반영하기 위하여 다양한 화학구조를 가진 트리실록산 계면활성제들이 개발되고 있다. 본 총설에서는 소수성 트리실록산 중추로서의 반응성 트리실록산의 합성방법, 반응성 트리실록산을 친수성 그룹과 결합시키는 규소 수소화반응같은 주요 반응방법, 그리고 폴리에테르, 카보하이드레이트, 제미니, 볼라폼, 더블 트리실록산 타입 등 주요 저분자 트리실록산 계면활성제들의 합성방법을 논의한다.

Keywords

References

  1. T. F. Tadros, Applied Surfactants Principles and Applications, Wiley-VCH (2005).
  2. M. J. Rang, Trend on Development and Application of Polymeric Surfactants , J. of Korean Oil Chemists' Soc, 30(3), 546-567 (2015).
  3. JOCS, Silicone Surfactant, in Interfaces and Surfactants : Fundamentals and Applications, p.60-68 (2009).
  4. R. M. Hill, Silicone Surfactants - New Developments, Current Opinions in Colloids & Interface Science, 7, 255-261 (2007).
  5. R. M. Hill, Silicone Surfactants, in Chemistry and Technology of Surfactants, R. Farn(ed.), p.186-203, Blackwell (2006).
  6. R. G. Jones, W. Ando and J. Chojnowski, Silicon Containing Polymers, Kluwer (2000).
  7. R. M. Hill, Siloxane Surfactants, in Specialty Surfactants, I.D. Robb (ed.). p.143-168, Blackie Academic & Professional (1997).
  8. A. J. O'Lenick Jr., Silicone Emulsions and Surfactants, J. Surfact. Deterg., 3(3), 387-393(2000). https://doi.org/10.1007/s11743-000-0143-y
  9. R. M. Hill, Silicone Surfactants, in Silicone Surfactants, p.1-47, CRC Press (1999).
  10. B. Marcineic, Hydrosilylation : A Comprehensive Review on Recent Advances, Springer (2008).
  11. B. R. Yoo and I. N. Jung, Recent Progress in the Direct Synthesis of New Starting Materials for Silicone, Prospectives of Industrial Chemistry, 2(4), 1-23 (1999).
  12. L. J. Petroff and S. A. Snow, Silicone Surfactants, in Silicone Surface Science, M. J. Owen and P. R. Dvornic (ed.), p.243-280 (2012).
  13. M. He, R.M. Hill, H.A. Doumaux, F.S. Bates, H.T. Davis, D.F. Evans and L.E. Scriven, Microstructure and Rheology of Nonionic Trisiloxane Surfactant Solutions, in Structure and Flow in Surfactant Solutions, C.A. Herb and R. K. Prud'homme (ed.), American Chemical Society (1994).
  14. D. W. Chung, Study on the Synthesis of Low Molecular Weight Silicones Modified with Polyethers, J. Korean Ind. Eng. Chem., 19(3), 332-337 (2008).
  15. Z. Peng, Q. Wu, T Cai, H. Gao, K. Chen, Syntheses and Properties of Hydrolysis Resistant Twin-Tail Trisiloxane Surfactants, Colloids and Surfaces A, 342, 127-131 (2009). https://doi.org/10.1016/j.colsurfa.2009.04.028
  16. L. Lewis, From Sand to Silicones : An Overview of the Chemistry of Silicones, in Silicones and Silicones-Modified Materials, S. J. Clarson et al.(Ed), p.11-19, 21.American Chemical Society (2000).
  17. R. Wagner, L. Richer, Y.Wu, J. Weissmuller, J. Reiners, E. Hengge, A. Kleewein and K. Hassier, Silicon-Modified Carbohydrate Surfactant I, Appl. Organomet, Chem., 10, 421-435 (1996), https://doi.org/10.1002/(SICI)1099-0739(199608)10:6<421::AID-AOC495>3.0.CO;2-C
  18. R. Wagner, L. Richer, Y.Wu, J. Weissmuller, J. Reiners, E. Hengge, A. Kleewein and K. Hassier, Silicon-Modified Carbohydrate Surfactant IV, Appl. Organomet, Chem., 11, 645-657 (1997). https://doi.org/10.1002/(SICI)1099-0739(199708)11:8<645::AID-AOC600>3.0.CO;2-0
  19. H. Gong, W, Hu, L. Liao, Z. Luo, S. Zhang and G. Yin, Synthesis of 1,1,1,3,5,5,5-Heptamethyltrisiloxane by Response Surface Methodology, CIESC Journal, 64, 3633-3639 (2013).
  20. Method for Synthesizing 1,1,1,3,5,5,5- Heptamethyltrisiloxane by Continuous Catalysis of Solid Phase Catalyst, China Patent, CN 101921287 B (2012).
  21. W. Guoyong, D. Zhiping, L. Qiuxiao, Z. Wei, Carbohydrate-Modified Siloxane Surfactants and Their Adsorption and Aggregation Behavior in Aqueous Solution, J. Phys. Chem., 114, 6872-6877 (2010). https://doi.org/10.1021/jp102160k
  22. Preparation Method for 3-Aminopropyl Trisiloxane, China Patent, CN 102115480 A (2010).
  23. Z. Peng, C. La and J. Lai, Synthesis and Properties of Novel Double-Tail Trisiloxane Surfactants. J. Surfact. Deterg., 12, 331-336(2009). https://doi.org/10.1007/s11743-009-1134-6
  24. D.L. Long, G.Zhong, G. wang and G. Li, Synthesis and Properties of Guconamide- Based Trisiloxane Surfactant, J. Disp. Sci. Tech., 33, 1603-1607 (2012). https://doi.org/10.1080/01932691.2011.629500
  25. F. Han and G. Zhang, New Family of Siloxane Surfactants Having Glucosamide, Tenside Surfactants Detergents, 40(3), 332-337 (2003).
  26. F. Han and G. Zhang, New Family of Gemini Surfactants with Glucosamide-Based Trisiloxane, Colloids and Surfaces A. 237, 79-85 (2004). https://doi.org/10.1016/j.colsurfa.2004.01.033
  27. S. A. Snow, Synthesis, Charaterization, Stability, Aqueous Surface Activity and Aqueous Solution Aggregation of Novel Cationic Siloxane Surfactants, Langmuir, 9, 424-430 (1993). https://doi.org/10.1021/la00026a011
  28. L.S. Bonnington, W. Henferson and J.A. Zabkiewicz, Characterization of Synthetic and Commercial Trisiloxane Surfactants Materials, Appl. Organomet, Chem. 18, 28-38 (2004). https://doi.org/10.1002/aoc.563
  29. D. W. Kim and S.T. Noh, Synthesis and Surface Active Properties of Trisiloxane Grafted Oligo(propylene oxide-blockethylene oxide) Allyl Methyl Ether Surfactant, J. Korean Ind. Eng. Chem., 9(5), 537-550 (2003).
  30. T. Stoebe, Z. Lin, R. M. Hill, M. D. Ward and H. T. Davis, Surfactant- Enhanced Spreading, Langmuir, 12, 337-344 (1996). https://doi.org/10.1021/la950513x
  31. L. J. Petroff and S. A. Snow, Silicone Surfactants, in Silicone Surface Science, M. J. Owen and P. R. Dvornic (ed.), p.243-280 (2012).
  32. D. W. Kang and Y. M. Kim, Polyorganosiloxane Modified Polymer, Prospectives of Industrial Chemistry, 2(4), 3-9 (1999).
  33. R. Luo, P. Liu and Y. Chen, Synthesis and Properties of a Hydrolysis Resistant Cationic Trisiloxane Surfactants. J. Surfact. Deterg., 16, 33-38(2013). https://doi.org/10.1007/s11743-012-1363-y
  34. U. Retter, R. Klinger, R. Philip, H. Lohse and G. Schmaucks, Effect of Chemical Structure on Hydrolysis of Siloxane Alkyl Ammonium Bromides, J. Colloid Interface Sci.. 201, 269-27 baas(1998).
  35. G. Jonas, R. Stadler, Carbohydrate- Modified Polysiloxanes II Synthesis via Hydrosilation of Mono-, Di-, and Oligosaccharide Allylglycoside, Acta Polym., 45(1), 14-20 (1994). https://doi.org/10.1002/actp.1994.010450104
  36. F. Han, Y Chen, Y. Zhou and B. Xu, Synthesis and Characterization of Glycoside -based Trisiloxane Surfactant. J. Surfact. Deterg., 14, 515-520 (2011). https://doi.org/10.1007/s11743-011-1265-4
  37. A. J. O'Lenick Jr., Silicone Based Glycoside, U.S. Patent No. 5,428,142 (1995).
  38. A. J. O'Lenick Jr., Silicone Polymers, U.S. Patent No. 5,550,219 (1996).
  39. F. Han, Y. Y. Deng, Y. W. Zhou and B. C. Xu, Carbohydrate-Modified Silicone Surfactant, J. Surfac. Deterg., 15, 123-129 (2012). https://doi.org/10.1007/s11743-011-1290-3
  40. X. Zhou and D. Zhang, Transition from Micelle to Vesicle of a Novel Sugar-based Surfactant Containing Trisiloxane, Tenside Surfactants Detergents, 53(3), 273-277 (2016). https://doi.org/10.3139/113.110433
  41. F. Han, Y. Liu, Y. Gao, Y. Liang, Y. Zhou and B. Xu, Synthesis and Characterization of Quaternized Glucosamide-based Trisiloxane Surfactant. J. Surfact. Deterg., 17, 733-737 (2014). https://doi.org/10.1007/s11743-014-1571-8
  42. F. Han and G. Zhang, Synthesis and Characterization of Glucosamide-based Trisiloxane Gemini Surfactant. J. Surfact. Deterg., 7(2), 175-180(2004). https://doi.org/10.1007/s11743-004-0301-2
  43. Y. Zhang, G. Zhang and F. Han, The Spreading and Superspreading Behaviour of New Glucosamide-based Trisiloxane Surfactants on Hydrophobic Foliage, Colloids and Surface A, 276, 100-106 (2006). https://doi.org/10.1016/j.colsurfa.2005.10.024
  44. Y. Zhang and F. Han, The Spreading Behaviour and Spreading Mechanism of New Glucosamide-based Trisiloxane Surfactants on Polystyrene Surfaces, Colloids and Surface A, 337, 211-217 (2009). https://doi.org/10.1016/j.jcis.2009.04.074
  45. G. Wang, D. Zhang, Z. Du and P. Li, Spontaneous Vesicle Formation from Trisiloxane-tailed Gemini Surfactant, J. Ind. Eng. Chem. 20, 1247-1250 (2014). https://doi.org/10.1016/j.jiec.2013.09.032
  46. Z. Huang, H. Zhong, S. wang, L. Xia. G. Zhao and G. Liu, Gemini Trsiloxane Surfactants : Synthesis and Flotation of Aluminosilicate, Minerals Engineering, 56, 145-154 (2014). https://doi.org/10.1016/j.mineng.2013.11.006
  47. G. Zhang, F. Han and G. Zhang, Synthesis and Interfacial Properties of a New Family of Trisiloxanes, Acta Chimica Sinica, 64(11), 1205-1208 (2006).
  48. Z. Peng, C. Lu and J. Lai, Synthesis and Properties of Novel Double-tail Trisiloxane Surfactants. J. Surfact. Deterg., 12, 331-336 (2009). https://doi.org/10.1007/s11743-009-1134-6
  49. Z. Peng, C. Lu and M. Xu, Influence of Substructures on the Spreading Ability and Hydrolysis Resistance of Double-tail Trisiloxane Surfactants. J. Surfact. Deterg., 13, 75-81 (2010). https://doi.org/10.1007/s11743-009-1144-4
  50. Z. Peng, C. Lu and M. Xu, Synthesis and Properties of Double-tail Trisiloxane Surfactants with High Spreading Ability. J. Surfact. Deterg., 14, 521-528 (2011). https://doi.org/10.1007/s11743-011-1274-3
  51. Z. Peng, Y. Liufu, L. Zhang and J. Chen, Syntheses and Properties of New Double-tail Trisiloxane Surfactant with Both Hydrolysis Resistance and High Spreading Ability, Tenside Surfactants Detergents, 48(2), 148-153 (2011). https://doi.org/10.3139/113.110116
  52. Z. Peng, J. Huang, F. Chen, Q. Ye and Q. Li, Syntheses and Properties of Ethoxylated Double-tail Trisiloxane Surfactants Containing a Propanetrioxyy Spacer, Appl. Organometal. Chem., 25, 383-389 (2011). https://doi.org/10.1002/aoc.1775
  53. Z. Peng and H. Zeng, Syntheses, Surface Activity and Application Properties of a a Novel Ethoxylated Gemini Trisiloxane Surfactant, Tenside Surfactants Detergents, 53(2), 127-133 (2016). https://doi.org/10.3139/113.110417
  54. F. Xing, Y. Gao, Q. Xu, X. Li, L. Wang, J. Meng and P. Wang, The Effect of the Organic Groups Attached at the Silicone Atoms of the Organosilane-based Gemini Nonionic Surfactants on Theit Surface Activities. J. Surfact. Deterg., 17, 739-745 (2014). https://doi.org/10.1007/s11743-013-1545-2
  55. G. Wang, X. Li, Z. Du, E. Li and P. Li, Butynediol-ethoxylate Based Trisiloxane : Structural Characterization and Physicochemical Properties in Water, J. Molecular Liquids, 197, 197-203 (2014). https://doi.org/10.1016/j.molliq.2014.04.033
  56. J. Qin, Z. Du, X. Ma, Y. Zhu and G. Wang, Effect of Siloxane Backbone Length on Butynediol-ethoxylate Based Polysiloxane, J. Molecular Liquids, 214, 54-58 (2016). https://doi.org/10.1016/j.molliq.2015.11.058
  57. G. Schmaucks, G. Sonnek, R. Wustneck, M. herbst and M. Ramm, Effect of Siloxanyl Groups on the Interfacial Behavior of Quaternary Ammonium Compounds, Langmuir, 8, 1724-1730 (1992). https://doi.org/10.1021/la00043a007
  58. M. He, Z. Lin, L.E. Scriven and H.T. Davis, Aggregation Behavior and microstructure of Cationic Trisiloxane Surfactants in Aqueous Solutions, J. Phys. Chem., 98, 6148-6157 (1994). https://doi.org/10.1021/j100075a018