DOI QR코드

DOI QR Code

Estimation of Computed Tomography Dose in Various Phantom Shapes and Compositions

다양한 팬텀 모양 및 재질에 따른 전산화단층촬영장치 선량 평가

  • Lee, Chang-Lae (Department of Radiological Science, Yonsei University)
  • 이창래 (연세대학교 방사선학과)
  • Received : 2016.12.30
  • Accepted : 2017.02.22
  • Published : 2017.03.31

Abstract

The purpose of this study was to investigate CTDI (computed tomography dose index at center) for various phantom shapes, sizes, and compositions by using GATE (geant4 application for tomographic emission) simulations. GATE simulations were performed for various phantom shapes (cylinder, elliptical, and hexagonal prism PMMA phantoms) and phantom compositions (water, PMMA, polyethylene, polyoxymethylene) with various diameters (1-50 cm) at various kVp and mAs levels. The $CTDI_{100center}$ values of cylinder, elliptical, and hexagonal prism phantom at 120 kVp, 200 mAs resulted in 11.1, 13.4, and 12.2 mGy, respectively. The volume is the same, but $CTDI_{100center}$ values are different depending on the type of phantom. The water, PMMA, and polyoxymethylene phantom $CTDI_{100center}$ values were relatively low as the material density increased. However, in the case of Polyethylene, the $CTDI_{100center}$ value was higher than that of PMMA at diameters exceeding 15 cm ($CTDI_{100center}$ : 35.0 mGy). And a diameter greater than 30 cm ($CTDI_{100center}$ : 17.7 mGy) showed more $CTDI_{100center}$ than Water. We have used limited phantoms to evaluate CT doses. In this study, $CTDI_{100center}$ values were estimated and simulated by GATE simulation according to the material and shape of the phantom. CT dosimetry can be estimated more accurately by using various materials and phantom shapes close to human body.

본 논문은 GATE (geant4 application for tomographic emission) 시뮬레이션을 이용하여 다양한 모양과 재질의 팬텀에서 CTDI (computed tomography dose index)를 평가하였다. GATE 시뮬레이션은 실린더 기둥, 타원 기둥과 육각 기둥 형태와 물, PMMA (polymethyl methacrylate), polyethylene 그리고 polyoxymethylene 재질의 다양한 지름(1 ~ 50 cm)의 팬텀을 모사하여 $CTD_{I100center}$ 값을 비교하였다. 120 kV, 200 mAs에서 실린더 기둥, 타원 기둥과 육각 기둥의 $CTDI_{100center}$ 값은 각각 11.1, 13.4 그리고 12.2 mGy이었다. 이 결과는 동일 볼륨이지만 팬텀의 형태에 따라 $CTDI_{100center}$ 값의 차이가 있음을 알 수 있다. 그리고 물, PMMA 그리고 polyoxymethylene 팬텀의 $CTDI_{100center}$ 값을 비교했을 때 물질의 밀도가 높을수록 상대적으로 $CTDI_{100center}$ 값이 낮게 측정되었다. 하지만 polyethylene의 경우 지름이 15 cm ($CTDI_{100center}$ : 35.0 mGy) 이 상에서는 PMMA 보다 $CTDI_{100center}$ 값이 증가하였다. 그리고 30 cm ($CTDI_{100center}$ : 17.7 mGy) 이 상의 지름에서는 물 보다 더 높은 $CTDI_{100center}$ 값을 보였다. 본 실험을 통해 팬텀의 재질 및 모양에 따른 $CTDI_{100center}$ 값을 GATE 시뮬레이션을 이용하여 평가하였다. CT 선량 평가시 다양한 재질 및 인체에 가까운 모양의 팬텀을 사용함으로써 좀 더 정확한 환자선량을 평가할 수 있을 것이다.

Keywords

References

  1. Brenner David J., McCollough CH., Ortho Colin G.: It is time to retire the computed tomography dose index (CTDI) for CT quality assurance and dose optimization. For the proposition. Medical Physics, 33, 1189-1190, 2006
  2. Boone JM.: The trouble with CTD100. Medical Physics, 34(4), 1364-1371, 2007 https://doi.org/10.1118/1.2713240
  3. McCollough CH.: It is time to retire the computed tomography dose index (CTDI) for CT quality assurance and dose optimization. Against the proposition. Medical Physics, 33(5), 1190-1191, 2006
  4. Dixon RL.: Restructuring CT dosimetry-a realistic strategy for the future Requiem for the pencil chamber. Medical Physics, 33(1), 3973-3976, 2006 https://doi.org/10.1118/1.2336504
  5. Sarabjeet Singh, Mannudeep K. Kalra, James HT, Mahadevappa M.: Automatic Exposure Control in CT: Applications and Limitations. Journal of the American College of Radiology, 8, 446-449, 2011 https://doi.org/10.1016/j.jacr.2011.03.001
  6. Grant K, Schmidt B.: CARE kV: automated dose-optimized selection of x-ray tube voltage. Available at: http://www.medical.siemens.com/siemens/en_US/gg_ct_FBAs/files/Case_Studies/CarekV_White_Paper.pdf, 2012
  7. Paul DD, Oliver Langner, Dipl Ing, Michael Lell, WA Kalender.: Effects of Adaptive Section Collimation on Patient Radiation Dose in Multisection Spiral CT. Radiology, 252(1), 140-147, 2009 https://doi.org/10.1148/radiol.2522081845
  8. Erin Ange, Nazanin Yaghmai, Cecilia Matilda Jude, et al.: Dose to Radiosensitive Organs During Routine Chest CT: Effects of Tube Current Modulation. American Journal of Roentgenology, 193(5), 1340-1345, 2009 https://doi.org/10.2214/AJR.09.2886
  9. Hsieh J.: Computed tomography: principles, design, artifacts, and recent advances. Bellingham, WA: SPIE Press, 2003
  10. David J. Brenner, Eric J. Hall.: Computed Tomography - An Increasing Source of Radiation Exposure. The New England Journal of Medicine, 2277-2284, 2007
  11. Shope TB, Gagne RM, Johnson GC.: A method for describing the doses delivered by transmission x-ray computed tomography. Medical Physics, 8(4), 488-495, 1981 https://doi.org/10.1118/1.594995
  12. Platten D, Castellano I, Chapple C, et al.: Radiation dosimetry for wide-beam CT scanners: recommendations of a working party of the institute of physics and engineering in medicine.The British Journal of Radiology, 86(1027), 2013
  13. Zhou H, Boone JM.: Monte Carlo evaluation of CTD(infinity) in infinitely long cylinders of water, polyethylene and PMMA with diameters from 10 mm to 500 mm. Medical Physics, 35(6), 2424-2431, 2008 https://doi.org/10.1118/1.2921829
  14. Chang-Lae Lee, Hee-Joung Kim, Yong Hyun Chung, et al.: GATE Simulations of CTDI for CT Dose. Journal of the Korean Physical Society, 54(4), 1702-1708, 2009 https://doi.org/10.3938/jkps.54.1702
  15. Nickoloff EL, Dutta AK, Lu ZF.: Influence of phantom diameter, kVp and scan mode upon computed tomography dose index. Medical Physics, 30(3), 395-402, 2003 https://doi.org/10.1118/1.1543149
  16. Marilyn J., Bernhard S., David Bradley, et al.: Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape. Radiology, 233(2), 515-522, 2004 https://doi.org/10.1148/radiol.2332032107
  17. S. Jan, G. Santin, D. Strul, et al.: GATE - Geant4 Application for Tomographic Emission: a simulation toolkit for PET and SPECT. Physics in Medicine and Biology, 49(19), 4543-4561, 2004 https://doi.org/10.1088/0031-9155/49/19/007
  18. Dowsett DJ, Kenny PA, Johnston R.E.: The Physics of Diagnostic Imaging (2nd ed.). London: Hodder Education. p. 430. ISBN 9781444113396, 2006
  19. Meyer P, Buffard E, Mertz L, Kennel C, Constantinesco A, Siffert P.: Evaluation of the use of six diagnostic X-ray spectra computer codes. The British Journal of Radiology, 77(915), 224-30, 2004 https://doi.org/10.1259/bjr/32409995
  20. Michael F. McNitt-Gray: AAPM/RSNA Physics Tutorial for Residents: Topics in CT Radiation Dose in CT1, RadioGraphics 22(6), 1541-1553, 2002 https://doi.org/10.1148/rg.226025128
  21. Boone JM, Geraghty EM, Seibert JA, Wootton-Gorges SL.: Dose Reduction in Pediatric CT: A Rational Approach. Radiology, 228(2), 352-60, 2003 https://doi.org/10.1148/radiol.2282020471