DOI QR코드

DOI QR Code

Inhibition of Carcinogen-Activating Cytochrome P450 Enzymes by Xenobiotic Chemicals in Relation to Antimutagenicity and Anticarcinogenicity

  • Shimada, Tsutomu (Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Veterinary Sciences, Osaka Prefecture University)
  • Received : 2017.02.09
  • Accepted : 2017.02.16
  • Published : 2017.04.15

Abstract

A variety of xenobiotic chemicals, such as polycyclic aromatic hydrocarbons (PAHs), aryl- and heterocyclic amines and tobacco related nitrosamines, are ubiquitous environmental carcinogens and are required to be activated to chemically reactive metabolites by xenobiotic-metabolizing enzymes, including cytochrome P450 (P450 or CYP), in order to initiate cell transformation. Of various human P450 enzymes determined to date, CYP1A1, 1A2, 1B1, 2A13, 2A6, 2E1, and 3A4 are reported to play critical roles in the bioactivation of these carcinogenic chemicals. In vivo studies have shown that disruption of Cyp1b1 and Cyp2a5 genes in mice resulted in suppression of tumor formation caused by 7,12-dimethylbenz[a]anthracene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, respectively. In addition, specific inhibitors for CYP1 and 2A enzymes are able to suppress tumor formation caused by several carcinogens in experimental animals in vivo, when these inhibitors are applied before or just after the administration of carcinogens. In this review, we describe recent progress, including our own studies done during past decade, on the nature of inhibitors of human CYP1 and CYP2A enzymes that have been shown to activate carcinogenic PAHs and tobacco-related nitrosamines, respectively, in humans. The inhibitors considered here include a variety of carcinogenic and/or non-carcinogenic PAHs and acethylenic PAHs, many flavonoid derivatives, derivatives of naphthalene, phenanthrene, biphenyl, and pyrene and chemopreventive organoselenium compounds, such as benzyl selenocyanate and benzyl selenocyanate; o-XSC, 1,2-, 1,3-, and 1,4-phenylenebis(methylene)selenocyanate.

Keywords

References

  1. Rendic, S. and Guengerich, F.P. (2012) Contributions of human enzymes in carcinogen metabolism. Chem. Res. Toxicol., 25, 1316-1383. https://doi.org/10.1021/tx300132k
  2. Guengerich, F.P. (1988) Roles of cytochrome P-450 enzymes in chemical carcinogenesis and cancer chemotherapy. Cancer Res., 48, 2946-2954.
  3. Pelkonen, O. and Nebert, D.W. (1982) Metabolism of polycyclic aromatic hydrocarbons: etiologic role in carcinogenesis. Pharmacol. Rev., 34, 189-222.
  4. Jalas, J.R., Hecht, S.S. and Murphy, S.E. (2005) Cytochrome P450 enzymes as catalysts of metabolism of 4-(methylnitrosamino)- 1-(3-pyridyl)-1-butanone, a tobacco specific carcinogen. Chem. Res. Toxicol., 18, 95-110. https://doi.org/10.1021/tx049847p
  5. Xue, W. and Warshawsky, D. (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol. Appl. Pharmacol., 206, 73-93. https://doi.org/10.1016/j.taap.2004.11.006
  6. Guengerich, F.P. and Shimada, T. (1991) Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem. Res. Toxicol., 4, 391-407. https://doi.org/10.1021/tx00022a001
  7. Shimada, T. and Fujii-Kuriyama, Y. (2004) Metabolic activation of polycyclic aromatic hydrocarbons to carcinogens by cytochrome P450 1A1 and 1B1. Cancer Sci., 95, 1-6. https://doi.org/10.1111/j.1349-7006.2004.tb03162.x
  8. Shimada, T. (2006) Xenobiotic-metabolizing enzymes involved in activation and inactivation of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab. Pharmacokinet., 21, 257-276. https://doi.org/10.2133/dmpk.21.257
  9. Shimada, T. and Okuda, Y. (1988) Metabolic activation of environmental carcinogens and mutagens by human liver microsomes. Role of cytochrome P-450 homologous to a 3-methylcholanthrene- inducible isozyme in rat liver. Biochem. Pharmacol., 37, 459-465. https://doi.org/10.1016/0006-2952(88)90215-8
  10. Shimada, T. and Guengerich, F.P. (1989) Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc. Natl. Acad. Sci. U.S.A, 86, 462-465. https://doi.org/10.1073/pnas.86.2.462
  11. Shimada, T., Iwasaki, M., Martin, M.V. and Guengerich, F.P. (1989) Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by umu gene response in Salmonella typhimurium TA1535/ pSK1002. Cancer Res., 49, 3218-3228.
  12. Shimada, T., Martin, M.V., Pruess-Schwartz, D., Marnett, L.J. and Guengerich, F.P. (1989) Roles of individual human cytochrome P-450 enzymes in the bioactivation of benzo(a)pyrene, 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycyclic aromatic hydrocarbons. Cancer Res., 49, 6304-6312.
  13. Aoyama, T., Yamano, S., Guzelian, P.S., Gelboin, H.V. and Gonzalez, F.J. (1990) Five of 12 forms of vaccinia virusexpressed human hepatic cytochrome P450 metabolically activate aflatoxin B1. Proc. Natl. Acad. Sci. U.S.A., 87, 4790-4793. https://doi.org/10.1073/pnas.87.12.4790
  14. Kitada, M., Taneda, M., Ohta, K., Nagashima, K., Itahashi, K. and Kamataki, T. (1990) Metabolic activation of aflatoxin B1 and 2-amino-3-methylimidazo[4,5-f]-quinoline by human adult and fetal livers. Cancer Res., 50, 2641-2645.
  15. Shimada, T., Hayes, C.L., Yamazaki, H., Amin, S., Hecht, S.S., Guengerich, F.P. and Sutter, T.R. (1996) Activation of chemically diverse procarcinogens by human cytochrome P450 1B1. Cancer Res., 56, 2979-2984.
  16. Shimada, T., Yun, C.H., Yamazaki, H., Gautier, J.C., Beaune, P.H. and Guengerich, F.P. (1992) Characterization of human lung microsomal cytochrome P-450 1A1 and its role in the oxidation of chemical carcinogens. Mol. Pharmacol., 41, 856-864.
  17. Yamazaki, H., Inui, Y., Yun, C.H., Guengerich, F.P. and Shimada, T. (1992) Cytochrome P450 2E1 and 2A6 enzymes as major catalysts for metabolic activation of N-nitrosodialkylamines and tobacco-related nitrosamines in human liver microsomes. Carcinogenesis, 13, 1789-1794. https://doi.org/10.1093/carcin/13.10.1789
  18. Fujita, K. and Kamataki, T. (2001) Role of human cytochrome P450 (CYP) in the metabolic activation of N-alkylnitrosamines: application of genetically engineered Salmonella typhimurium YG7108 expressing each form of CYP together with human NADPH-cytochrome P450 reductase. Mutat. Res., 483, 35-41. https://doi.org/10.1016/S0027-5107(01)00223-8
  19. Shimada, T., Oda, Y., Gillam, E.M., Guengerich, F.P. and Inoue, K. (2001) Metabolic activation of polycyclic aromatic hydrocarbons and other procarcinogens by cytochromes P450 1A1 and P450 1B1 allelic variants and other human cytochromes P450 in Salmonella typhimurium NM2009. Drug Metab. Dispos., 29, 1176-1182.
  20. Shimada, T. and Guengerich, F.P. (2006) Inhibition of human cytochrome P450 1A1-, 1A2-, and 1B1-mediated activation of procarcinogens to genotoxic metabolites by polycyclic aromatic hydrocarbons. Chem. Res. Toxicol., 19, 288-294 https://doi.org/10.1021/tx050291v
  21. Shimada, T., Murayama, N., Okada, K., Funae, Y., Yamazaki, H. and Guengerich, F. P. (2007) Different mechanisms of inhibition for human cytochrome P450 1A1, 1A2, and 1B1 by polycyclic aromatic inhibitors. Chem. Res. Toxicol., 20, 489-496. https://doi.org/10.1021/tx600299p
  22. Shimada, T., Murayama, N., Tanaka, K., Takenaka, S., Imai, Y., Hopkins, N.E., Foroozesh, M.K., Alworth, W.L., Yamazaki, H., Guengerich, F.P. and Komori, M. (2008) Interaction of polycyclic aromatic hydrocarbons with human cytochrome P450 1B1 in inhibiting catalytic activity. Chem. Res. Toxicol., 21, 2313-2323. https://doi.org/10.1021/tx8002998
  23. Shimada, T., Tanaka, K., Takenaka, S., Foroozesh, M.K., Murayama, N., Yamazaki, H., Guengerich, F.P. and Komori, M. (2009) Reverse type I binding spectra of human cytochrome P450 1B1 induced by flavonoid, stilbene, pyrene, naphthalene, phenanthrene, and biphenyl derivatives that inhibit catalytic activity: a structure-function relationship study. Chem. Res. Toxicol., 22, 1325-1333. https://doi.org/10.1021/tx900127s
  24. Shimada, T., Tanaka, K., Takenaka, S., Murayama, N., Martin, M.V., Foroozesh, M.K., Yamazaki, H., Guengerich, F.P., and Komori, M. (2010) Structure-function relationships of inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2C9, and 3A4 by 33 flavonoid derivatives. Chem. Res. Toxicol., 23, 1921-1935. https://doi.org/10.1021/tx100286d
  25. Shimada, T., Murayama, N., Tanaka, K., Takenaka, S., Guengerich, F.P., Yamazaki, H. and Komori, M. (2011) Spectral modification and catalytic inhibition of human cytochromes P450 1A1, 1A2, 1B1, 2A6, and 2A13 by four chemopreventive organoselenium compounds. Chem. Res. Toxicol., 24, 1327-1337. https://doi.org/10.1021/tx200218u
  26. Shimada, T., Kim, D., Murayama, N., Tanaka, K., Takenaka, S., Nagy, L.D., Folkman, L.M., Foroozesh, M.K., Komori, M., Yamazaki, H. and Guengerich, F.P. (2013) Binding of diverse environmental chemicals with human cytochromes P450 2A13, 2A6, and 1B1 and enzyme inhibition. Chem. Res. Toxicol., 26, 517-528. https://doi.org/10.1021/tx300492j
  27. Shimada, T., Murayama, N., Yamazaki, H., Tanaka, K., Takenaka, S., Komori, M., Kim, D. and Guengerich F.P. (2013) Metabolic activation of polycyclic aromatic hydrocarbons and aryl and heterocyclic amines by human cytochromes P450 2A13 and 2A6. Chem. Res. Toxicol., 26, 529-537. https://doi.org/10.1021/tx3004906
  28. Shimada, T., Takenaka, S., Murayama, N., Yamazaki, H., Kim, J.H., Kim, D., Yoshimoto, F.K., Guengerich, F.P. and Komori, M. (2015) Oxidation of acenaphthene and acenaphthylene by human cytochrome P450 enzymes. Chem. Res. Toxicol., 28, 268-278. https://doi.org/10.1021/tx500505y
  29. Shimada, T., Takenaka, S., Murayama, N., Kramlinger, V.M., Kim, J.H., Kim, D., Liu, J., Foroozesh, M.K., Yamazaki, H., Guengerich, F.P. and Komori, M. (2016) Oxidation of pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene by human cytochrome P450 2A13. Xenobiotica, 46, 211-224. https://doi.org/10.3109/00498254.2015.1069419
  30. Shimada, T., Takenaka, S., Kakimoto, K., Murayama, N., Lim, Y.R., Kim, D., Foroozesh, M.K., Yamazaki, H., Guengerich, F.P. and Komori, M. (2016) Structure-function studies of naphthalene, phenanthrene, biphenyl, and their derivatives in interaction with and oxidation by cytochromes P450 2A13 and 2A6. Chem. Res. Toxicol., 29, 1029-1040. https://doi.org/10.1021/acs.chemrestox.6b00083
  31. Shimada, T., Kakimoto, K., Takenaka, S., Koga, N., Uehara, S., Murayama, N., Yamazaki, H., Kim, D., Guengerich, F.P. and Komori, M. (2016) Roles of human CYP2A6 and monkey CYP2A24 and 2A26 cytochrome P450 enzymes in the oxidation of 2,5,2',5'-tetrachlorobiphenyl. Drug Metab. Dispos., 44, 1899-1909. https://doi.org/10.1124/dmd.116.072991
  32. Buters, J.T., Sakai, S., Richter, T., Pineau, T., Alexander, D.L., Savas, U., Doehmer, J., Ward, J.M., Jefcoate, C.R. and Gonzalez, F.J. (1999) Cytochrome P450 CYP1B1 determines susceptibility to 7,12-dimethylbenz[a]anthracene-induced lymphomas. Proc. Nat. Acad. Sci. U.S.A., 96, 1977-1982. https://doi.org/10.1073/pnas.96.5.1977
  33. Buters, J., Quintanilla-Martinez, L., Schober, W., Soballa, V.J., Hintermair, J., Wolff, T., Gonzalez, F.J. and Greim, H. (2003) CYP1B1 determines susceptibility to low doses of 7,12-dimethylbenz[a]anthracene-induced ovarian cancers in mice: correlation of CYP1B1-mediated DNA adducts with carcinogenicity. Carcinogenesis, 24, 327-334. https://doi.org/10.1093/carcin/24.2.327
  34. Buters, J.T., Mahadevan, B., Quintanilla-Martinez, L., Gonzalez, F.J., Greim, H., Baird, W.M. and Luch, A. (2002) Cytochrome P450 1B1 determines susceptibility to dibenzo[a,l]pyreneinduced tumor formation. Chem. Res. Toxicol., 15, 1127-1135. https://doi.org/10.1021/tx020017q
  35. Buters, J.T., Mahadevan, B., Quintanilla-Martinez, L., Gonzalez, F.J., Greim, H., Baird, W.M. and Luch, A. (2002) Cytochrome P450 1B1 determines susceptibility to dibenzo[a,l]pyreneinduced tumor formation. Chem. Res. Toxicol., 15, 1127-1135. https://doi.org/10.1021/tx020017q
  36. Siddens, L.K., Bunde, K.L., Harper, T.A., Jr., McQuistan, T.J., Löhr, C.V., Bramer, L.M., Waters, K.M., Tilton, S.C., Krueger, S.K., Williams, D.E. and Baird, W.M. (2015) Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse. Toxicol. Appl. Pharmacol., 287, 149-160. https://doi.org/10.1016/j.taap.2015.05.019
  37. Heidel, S.M., Holston, K., Buters, J.T., Gonzalez, F.J., Jefcoate, C.R. and Czupyrynski, C.J. (1999) Bone marrow stromal cell cytochrome P4501B1 is required for pre-B cell apoptosis induced by 7,12-dimethylbenz[a]anthracene. Mol. Pharmacol., 56, 1317-1323. https://doi.org/10.1124/mol.56.6.1317
  38. Heidel, S.M., MacWilliams, P.S., Baird, W.M., Dashwood, W.M., Buters, J.T., Gonzalez, F.J., Larsen, M.C., Czuprynski, C.J. and Jefcoate, C.R. (2000) Cytochrome P4501B1 mediates induction of bone marrow cytotoxicity and preleukemia cells in mice treated with 7,12-dimethylbenz[a]anthracene. Cancer Res., 60, 3454-3460.
  39. Gao, J., Lauer, F.T., Dunaway, S. and Burchiel, S.W. (2005) Cytochrome P450 1B1 is required for 7,12-dimethylbenz(a)- anthracene (DMBA) induced spleen cell immunotoxicity. Toxicol. Sci., 86, 68-74. https://doi.org/10.1093/toxsci/kfi176
  40. Miyata, M., Kudo, G., Lee, Y.H., Yang, T.J., Gelboin, H.V., Fernandez-Salguero, P., Kimura, S. and Gonzalez, F.J. (1999) Targeted disruption of the microsomal epoxide hydrolase gene. Microsomal epoxide hydrolase is required for the carcinogenic activity of 7,12-dimethylbenz[a]anthracene. J. Biol. Chem., 274, 23963-23968. https://doi.org/10.1074/jbc.274.34.23963
  41. Shimizu, Y., Nakatsuru, Y., Ichinose, M., Takahashi, Y., Kume, H., Mimura, J., Fujii-Kuriyama, Y. and Ishikawa, T. (2000) Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. U.S.A., 97, 779-782. https://doi.org/10.1073/pnas.97.2.779
  42. Luch, A., Schober, W., Soballa, V.J., Raab, G., Greim, H., Jacob, J., Doehmer, J. and Seidel, A. (1999) Metabolic activation of dibenzo[a]pyrene by human cytochrome P450 1A1 and P450 1B1 expressed in V79 Chinese hamster cells. Chem. Res. Toxicol., 12, 353-364. https://doi.org/10.1021/tx980240g
  43. Shimada, T., Gillam, E.M., Oda, Y., Tsumura, F., Sutter, T.R., Guengerich, F.P. and Inoue, K. (1999) Metabolism of benzo[a]pyrene to trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by recombinant human cytochrome P450 1B1 and purified liver epoxide hydrolase. Chem. Res. Toxicol., 12, 623-629. https://doi.org/10.1021/tx990028s
  44. Uno, S., Dalton, T.P., Derkenne, S., Curran, C.P., Miller, M.L., Shertzer, H.G. and Nebert, D.W. (2004) Oral exposure to benzo[a]pyrene in the mouse: detoxication by inducible cytochrome P450 is more important than metabolic activation. Mol. Pharmacol., 65, 1225-1237. https://doi.org/10.1124/mol.65.5.1225
  45. Uno, S., Dalton, T.P., Dragin, N., Curran, C.P., Derkenne, S., Miller, M.L., Shertzer, H.G., Gonzalez, F.J. and Nebert, D.W. (2006) Oral benzo[a]pyrene in Cyp1 knockout mice lines: CYP1A1 important in detoxication, CYP1B1 metabolism required for immune damage independent of total-body burden and clearance rate. Mol. Pharmacol., 69, 1103-1114. https://doi.org/10.1124/mol.105.021501
  46. Nebert, D.W., Shi, Z., Gálvez-Peralta, M., Uno, S. and Dragin, N. (2013) Oral benzo[a]pyrene: understanding pharmacokinetics, detoxication, and consequences--Cyp1 knockout mouse lines as a paradigm. Mol. Pharmacol., 84, 304-313. https://doi.org/10.1124/mol.113.086637
  47. Megaraj, V., Zhou, X., Xie, F., Liu, Z., Yang, W. and Ding, X. (2014) Role of CYP2A13 in the bioactivation and lung tumorigenicity of the tobacco-specific lung procarcinogen 4-(methylnitrosamino)- 1-(3-pyridyl)-1-butanone: in vivo studies using a CYP2A13-humanized mouse model. Carcinogenesis, 35, 131-137. https://doi.org/10.1093/carcin/bgt269
  48. Liu, Z., Megaraj, V., Li, L., Sell, S., Hu, J. and Ding X. (2015) Suppression of pulmonary CYP2A13 expression by carcinogen- induced lung tumorigenesis in a CYP2A13-humanized mouse model. Drug Metab. Dispos., 43, 698-702. https://doi.org/10.1124/dmd.115.063305
  49. Hollander, M.C., Zhou, X., Maier, C.R., Patterson, A.D., Ding, X. and Dennis, P.A. (2011) A Cyp2a polymorphism predicts susceptibility to NNK-induced lung tumorigenesis in mice. Carcinogenesis, 32, 1279-1284. https://doi.org/10.1093/carcin/bgr097
  50. Li, L., Megaraj, V., Wei, Y. and Ding, X. (2014) Identification of cytochrome P450 enzymes critical for lung tumorigenesis by the tobacco-specific carcinogen 4-(methylnitrosamino)-1- (3-pyridyl)-1-butanone (NNK): insights from a novel Cyp2abfgs- null mouse. Carcinogenesis, 35, 2584-2591. https://doi.org/10.1093/carcin/bgu182
  51. Zhou, X., D'Agostino, J., Xie, F. and Ding, X. (2012) Role of CYP2A5 in the bioactivation of the lung carcinogen 4-(methylnitrosamino)- 1-(3-pyridyl)-1-butanone in mice. J. Pharmacol. Exp. Ther., 341, 233-241. https://doi.org/10.1124/jpet.111.190173
  52. Kang, J.S., Wanibuchi, H., Morimura, K., Gonzalez, F.J. and Fukushima, S. (2007) Role of CYP2E1 in diethylnitrosamineinduced hepatocarcinogenesis in vivo. Cancer Res., 67, 11141- 11146. https://doi.org/10.1158/0008-5472.CAN-07-1369
  53. Gelboin, H.V., Wiebel, F. and Diamond, L. (1970) Dimethylbenzanthracene tumorigenesis and aryl hydrocarbon hydroxylase in mouse skin: inhibition by 7,8-benzoflavone. Science, 170, 169-171. https://doi.org/10.1126/science.170.3954.169
  54. Kinoshita, N. and Gelboin, H.V. (1972) Aryl hydrocarbon hydroxylase and polycyclic hydrocarbon tumorigenesis: effect of the enzyme inhibitor 7,8-benzoflavone on tumorigenesis and macromolecule binding. Proc. Nat. Acad. Sci. U.S.A., 69, 824-828. https://doi.org/10.1073/pnas.69.4.824
  55. Kinoshita, N. and Gelboin, H.V. (1972) The role of aryl hydrocarbon hydroxylase in 7,12-dimethylbenz(a)anthracene skin tumorigenesis: on the mechanism of 7,8-benzoflavone inhibition of tumorigenesis. Cancer Res., 32, 1329-1339.
  56. Slaga, T.J., Thompson, S., Berry, D.L., Digiovanni, J., Juchau, M.R. and Viaje, A. (1977) The effects of benzoflavones on polycyclic hydrocarbon metabolism and skin tumor initiation. Chem. Biol. Interact., 3, 297-312.
  57. Riegel, B., Wartman, W.B., Hill, W.T., Reeb, B.B., Shubik, P. and Stanger, D. W. (1951) Delay of methylcholanthrene skin carcinogenesis in mice by 1,2,5,6-dibenzofluorene. Cancer Res., 11, 301-303.
  58. Hill, W.T., Stanger, D.W., Pizzo, A., Riege, B., Shubik, P. and Wartman, W.B. (1951) Inhibition of 9,10-dimethyl-1,2-benzanthracene skin carcinogenesis in mice by polycyclic hydrocarbons. Cancer Res., 11, 892-897.
  59. Slaga, T.J., Jecker, L., Bracken, W.M. and Weeks, C.E. (1979) The effects of weak or non-carcinogenic polycyclic hydrocarbons on 7,12-dimethylbenz[a]anthracene and benzo[a]pyrene skin tumor-initiation. Cancer Lett., 7, 51-59. https://doi.org/10.1016/S0304-3835(79)80076-2
  60. DiGiovanni, J., Rymer, J., Slaga, T.J. and Boutwell, R.K. (1982) Anticarcinogenic and cocarcinogenic effects of benzo[e]pyrene and dibenz[a,c]anthracene on skin tumor initiation by polycyclic hydrocarbons. Carcinogenesis, 3, 371-375. https://doi.org/10.1093/carcin/3.4.371
  61. Smolarek, T.A. and Baird, W.M. (1986) Benzo(e)pyreneinduced alterations in the stereoselectivity of activation of 7,12-dimethylbenz(a)anthracene to DNA-binding metabolites in hamster embryo cell cultures. Cancer Res., 46, 1170-1175.
  62. Smolarek, T.A., Baird, W.M., Fisher, E.P. and DiGiovanni, J. (1987) Benzo(e)pyrene-induced alterations in the binding of benzo(a)pyrene and 7,12-dimethylbenz(a)anthracene to DNA in Sencar mouse epidermis. Cancer Res., 47, 3701-3706.
  63. Smolarek, T.A. and Baird, W.M. (1984) Benzo[e]pyreneinduced alterations in the binding of benzo[a]pyrene to DNA in hamster embryo cell cultures. Carcinogenesis, 8, 1065-1069.
  64. Baird, W.M., Salmon, C.P. and Diamond, L. (1984) Benzo(e)pyrene-induced alterations in the metabolic activation of benzo(a)pyrene and 7,12-dimethylbenz(a)anthracene by hamster embryo cells. Cancer Res., 44, 1445-1452.
  65. Lesca, P. and Mansuy, D. (1980) 9-Hydroxyellipticine: inhibitory effect on skin carcinogenesis induced in Swiss mice by 7,12-dimethylbenz[a]anthracene. Chem. Biol. Interact., 30, 181-187. https://doi.org/10.1016/0009-2797(80)90124-6
  66. Alworth, W.L., Viaje, A., Sandoval, A., Warren, B.S. and Slaga, T.J. (1991) Potent inhibitory effects of suicide inhibitors of P450 isozymes on 7,12-dimethylbenz[a]anthracene and benzo[a]pyrene initiated skin tumors. Carcinogenesis, 7, 1209-1215.
  67. Cai, Y., Baer-Dubowska, W., Ashwood-Smith, M. and DiGiovanni, J. (1997) Inhibitory effects of naturally occurring coumarins on the metabolic activation of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene in cultured mouse keratinocytes. Carcinogenesis, 18, 215-222. https://doi.org/10.1093/carcin/18.1.215
  68. Kleiner, H.E., Vulimiri, S.V., Reed, M.J., Uberecken, A. and DiGiovanni, J. (2002) Role of cytochrome P450 1a1 and 1b1 in the metabolic activation of 7,12-dimethylbenz[a]anthracene and the effects of naturally ocurring furanocoumarins on skin tumor intitiation. Chem. Res. Toxicol., 15, 226-235. https://doi.org/10.1021/tx010151v
  69. Kleiner, H.E., Reed, M.J. and DiGiovanni, J. (2003) Naturally occurring coumarins inhibit human cytochromes P450 and block benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene DNA adduct formation in MCF-7 cells. Chem. Res. Toxicol., 16, 415-422. https://doi.org/10.1021/tx025636d
  70. Sulfikkarali, N., Krishnakumar, N., Manoharan, S. and Nirmal, R.M. (2013) Chemopreventive efficacy of naringeninloaded nanoparticles in 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis. Pathol. Oncol. Res., 19, 287-296. https://doi.org/10.1007/s12253-012-9581-1
  71. Silvan, S., Manoharan, S., Baskaran, N., Anusuya, C., Karthikeyan, S. and Prabhakar, M.M. (2011) Chemopreventive potential of apigenin in 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis. Eur. J. Pharmacol., 670, 571-577. https://doi.org/10.1016/j.ejphar.2011.09.179
  72. Kassie, F., Anderson, L.B., Scherber, R., Yu, N., Lahti, D., Upadhyaya, P. and Hecht, S.S. (2007) Indole-3-carbinol inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone plus benzo(a)pyrene-induced lung tumorigenesis in A/J mice and modulates carcinogen-induced alterations in protein levels. Cancer Res., 67, 6502-6511. https://doi.org/10.1158/0008-5472.CAN-06-4438
  73. Tanaka, T., Makita, H., Kawabata, K., Mori, H., Kakumoto, M., Satoh, K., Hara, A., Sumida, T., Tanaka, T. and Ogawa, H. (1997) Chemoprevention of azoxymethane-induced rat colon carcinogenesis by the naturally occurring flavonoids, diosmin and hesperidin. Carcinogenesis, 18, 957-965. https://doi.org/10.1093/carcin/18.5.957
  74. Takeuchi, H., Saoo, K., Matsuda, Y., Yokohira, M., Yamakawa, K., Zeng, Y., Kuno, T., Kamataki, T. and Imaida, K. (2009) 8- Methoxypsoralen, a potent human CYP2A6 inhibitor, inhibits lung adenocarcinoma development induced by 4-(methylnitrosamino)- 1-(3-pyridyl)-1-butanone in female A/J mice. Mol. Med. Rep., 2, 585-588.
  75. Takeuchi, H., Saoo, K., Yokohira, M., Ikeda, M., Maeta, H., Miyazaki, M., Yamazaki, H., Kamataki, T. and Imaida, K. (2003) Pretreatment with 8-methoxypsoralen, a potent human CYP2A6 inhibitor, strongly inhibits lung tumorigenesis induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in female A/J mice. Cancer Res., 63, 7581-7583.
  76. Miyazaki, M., Yamazaki, H., Takeuchi, H., Saoo, K., Yokohira, M., Masumura, K., Nohmi, T., Funae, Y., Imaida, K. and Kamataki. T. (2005) Mechanisms of chemopreventive effects of 8-methoxypsoralen against 4-(methylnitrosamino)-1-(3- pyridyl)-1-butanone-induced mouse lung adenomas. Carcinogenesis, 26, 1947-1955. https://doi.org/10.1093/carcin/bgi156
  77. Takeuchi, H., Saoo, K., Matsuda, Y., Yokohira, M., Yamakawa, K., Zeng, Y., Miyazaki, M., Fujieda, M., Kamataki, T. and Imaida, K. (2006) Dose dependent inhibitory effects of dietary 8-methoxypsoralen on NNK-induced lung tumorigenesis in female A/J mice. Cancer Lett., 234, 232-238. https://doi.org/10.1016/j.canlet.2005.03.038
  78. Wattenberg, L.W. (1987) Inhibitory effects of benzyl isothiocyanate administered shortly before diethylnitrosamine or benzo[a]pyrene on pulmonary and forestomach neoplasia in A/J mice. Carcinogenesis, 8, 1971-1973. https://doi.org/10.1093/carcin/8.12.1971
  79. Morse, M.A., Eklind, K.I., Amin, S.G., Hecht, S.S. and Chung, F.L. (1989) Effects of alkyl chain length on the inhibition of NNK-induced lung neoplasia in A/J mice by arylalkyl isothiocyanates. Carcinogenesis, 10, 1757-1759. https://doi.org/10.1093/carcin/10.9.1757
  80. Morse, M.A., Amin, S.G., Hecht, S.S. and Chung, F.L. (1989) Effects of aromatic isothiocyanates on tumorigenicity, O6- methylguanine formation, and metabolism of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in A/J mouse lung. Cancer Res., 49, 2894-2897.
  81. Shimada, T., El-Bayoumy, K., Upadhyaya, P., Sutter, T.R., Guengerich, F.P. and Yamazaki, H. (1997) Inhibition of human cytochrome P450-catalyzed oxidations of xenobiotics and procarcinogens by synthetic organoselenium compounds. Cancer Res., 57, 4757-4764.
  82. Fiala, E.S., Joseph, C., Sohn, O.S., El-Bayoumy, K. and Reddy, B.S. (1991) Mechanism of benzylselenocyanate inhibition of azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Res., 51, 2826-2830.
  83. von Weymarn, L.B., Chun, J.A. and Hollenberg, P.F. (2006) Effects of benzyl and phenethyl isothiocyanate on P450s 2A6 and 2A13: potential for chemoprevention in smokers. Carcinogenesis, 27, 782-790. https://doi.org/10.1093/carcin/bgi301
  84. El-Bayoumy, K., Chae, Y.H., Upadhyaya, P., Meschter, C., Cohen, L.A. and Reddy, B.S. (1992) Inhibition of 7,12- dimethylbenz(a)anthracene-induced tumors and DNA adduct formation in the mammary glands of female Sprague-Dawley rats by the synthetic organoselenium compound, 1,4-phenylenebis( methylene)selenocyanate. Cancer Res., 52, 2402-2407.
  85. Prokopczyk, B., Cox, J.E., Upadhyaya, P., Amin, S., Desai, D., Hoffmann, D. and El-Bayoumy, K. (1996) Effects of dietary 1,4-phenylenebis(methylene)selenocyanate on 4-(methylnitrosamino)- 1-(3-pyridyl)-1-butanone-induced DNA adduct formation in lung and liver of A/J mice and F344 rats. Carcinogenesis, 17, 749-753. https://doi.org/10.1093/carcin/17.4.749
  86. Prokopczyk, B., Rosa, J.G., Desai, D., Amin, S., Sohn, O.S., Fiala, E.S. and El-Bayoumy, K. (2000) Chemoprevention of lung tumorigenesis induced by a mixture of benzo(a)pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by the organoselenium compound 1,4-phenylenebis(methylene)selenocyanate. Cancer Lett., 161, 35-46. https://doi.org/10.1016/S0304-3835(00)00590-5
  87. El-Bayoumy, K., Das, A., Boyiri, T., Desai, D., Sinha, R., Pittman, B. and Amin, S. (2003) Comparative action of 1,4- phenylenebis(methylene)selenocyanate and its metabolites against 7,12-dimethylbenz[a]anthracene-DNA adduct formation in the rat and cell proliferation in rat mammary tumor cells. Chem. Biol. Interact., 146, 179-190. https://doi.org/10.1016/j.cbi.2003.08.004
  88. El-Bayoumy, K., Sinha, R., Pinto, J.T. and Rivlin, R.S. (2006) Cancer chemoprevention by garlic and garlic-containing sulfur and selenium compounds. J. Nutr., 136, 864S-869S. https://doi.org/10.1093/jn/136.3.864S
  89. El-Bayoumy, K. (1985) Effects of organoselenium compounds on induction of mouse forestomach tumors by benzo(a)pyrene. Cancer Res., 45, 3631-3635.
  90. Pelkonen, O., Turpeinen, M., Hakkola, J., Honkakoski, P., Hukkanen, J. and Raunio, H. (2008) Inhibition and induction of human cytochrome P450 enzymes: current status. Arch. Toxicol., 82, 667-715. https://doi.org/10.1007/s00204-008-0332-8
  91. Pelkonen, O., Maenpaa, J., Taavitsainen, P., Rautio, A. and Raunio, H. (1998) Inhibition and induction of human cytochrome P450 (CYP) enzymes. Xenobiotica, 28, 1203-1253. https://doi.org/10.1080/004982598238886
  92. Fowler, S. and Zhang, H. (2008) In vitro evaluation of reversible and irreversible cytochrome P450 inhibition: current status on methodologies and their utility for predicting drugdrug interactions. AAPS J., 10, 410-424. https://doi.org/10.1208/s12248-008-9042-7
  93. Hisaka, A., Ohno, Y., Yamamoto, T. and Suzuki, H. (2010) Prediction of pharmacokinetic drug-drug interaction caused by changes in cytochrome P450 activity using in vivo information. Pharmacol. Ther., 125, 230-248. https://doi.org/10.1016/j.pharmthera.2009.10.011
  94. Niwa, T., Murayama, N. and Yamazaki, H. (2011) Stereoselectivity of human cytochrome P450 in metabolic and inhibitory activities. Curr. Drug Metab., 12, 549-569. https://doi.org/10.2174/138920011795713724
  95. Zhang, Z.Y. and Wong, Y.N. (2005) Enzyme kinetics for clinically relevant CYP inhibition. Curr. Drug Metab., 6, 241-257. https://doi.org/10.2174/1389200054021834
  96. Ansede, J.H. and Thakker, D.R. (2004) High-throughput screening for stability and inhibitory activity of compounds toward cytochrome P450-mediated metabolism. J. Pharm. Sci., 93, 239-255. https://doi.org/10.1002/jps.10545
  97. Kamel, A. and Harriman, S. (2013) Inhibition of cytochrome P450 enzymes and biochemical aspects of mechanism-based inactivation (MBI). Drug Discov. Today Technol., 10, e177-e189. https://doi.org/10.1016/j.ddtec.2012.09.011
  98. Okino, S.T., Quattrochi, L.C., Barnes, H.J., Osanto, S., Griffin, K.J., Johnson, E.F. and Tukey, R.H. (1985) Cloning and characterization of cDNAs encoding 2,3,7,8-tetrachlorodibenzop- dioxin-inducible rabbit mRNAs for cytochrome P-450 isozymes 4 and 6. Proc. Natl. Acad. Sci. U.S.A., 82, 5310-5314. https://doi.org/10.1073/pnas.82.16.5310
  99. Quattrochi, L.C., Okino, S.T., Pendurthi, U.R. and Tukey, R.H. (1985) Cloning and isolation of human cytochrome P- 450 cDNAs homologous to dioxin-inducible rabbit mRNAs encoding P-450 4 and P-450 6. DNA, 4, 395-400. https://doi.org/10.1089/dna.1985.4.395
  100. Jaiswal, A.K., Nebert, D.W. and Gonzalez, F.J. (1986) Human P3(450): cDNA and complete amino acid sequence. Nucleic Acids Res., 14, 6773-6774. https://doi.org/10.1093/nar/14.16.6773
  101. Sutter, T.R., Tang, Y.M., Hayes, C.L., Wo, Y.Y., Jabs, E.W., Li, X., Yin, H., Cody, C.W. and Greenlee, W.F. (1994) Complete cDNA sequence of a human dioxin-inducible mRNA identifies a new gene subfamily of cytochrome P450 that maps to chromosome 2. J. Biol. Chem., 269, 13092-13099.
  102. Sansen, S., Yano, J.K., Reynald, R.L., Schoch, G.A., Griffin, K.J., Stout, C.D. and Johnson, E.F. (2007) Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J. Biol. Chem., 282, 14348-14355. https://doi.org/10.1074/jbc.M611692200
  103. Wang, A., Savas, U., Stout, C.D. and Johnson, E.F. (2011) Structural characterization of the complex between alphanaphthoflavone and human cytochrome P450 1B1. J. Biol. Chem., 286, 5736-5743. https://doi.org/10.1074/jbc.M110.204420
  104. Walsh, A.A., Szklarz, G.D. and Scott, E.E. (2013) Human cytochrome P4501A1structure and utility in understanding drug and xenobiotic metabolism. J. Biol. Chem., 288, 12932-12943. https://doi.org/10.1074/jbc.M113.452953
  105. Chang, T.K., Gonzalez, F.J. and Waxman, D.J. (1994) Evaluation of triacetyloleandomycin, alpha-naphthoflavone and diethyldithiocarbamate as selective chemical probes for inhibition of human cytochromes P450. Arch. Biochem. Biophys., 311, 437-442. https://doi.org/10.1006/abbi.1994.1259
  106. Koley, A.P., Buters, J.T., Robinson, R.C., Markowitz, A. and Friedman, F.K. (1997) Differential mechanisms of cytochrome P450inhibition and activation by alpha-naphthoflavone. J. Biol. Chem., 272, 3149-3152. https://doi.org/10.1074/jbc.272.6.3149
  107. Zhai, S., Dai, R., Friedman, F.K. and Vestal, R.E. (1998) Comparative inhibition of human cytochromes P450 1A1 and 1A2 by flavonoids. Drug Metab. Dispos., 26, 989-992.
  108. Liu, J., Sridhar, J. and Foroozesh, M. (2013) Cytochrome P450 family 1 inhibitors and structure-activity relationships. Molecules, 18, 14470-14495. https://doi.org/10.3390/molecules181214470
  109. Sridhar, J., Liu, J., Foroozesh, M. and Stevens, C.L. (2012) Insights on cytochrome p450 enzymes and inhibitors obtained through QSAR studies. Molecules, 17, 9283-9305. https://doi.org/10.3390/molecules17089283
  110. Shimada, T., Wunsch, R.M., Hanna, I.H., Sutter, T.R., Guengerich, F.P. and Gillam, E.M. (1998) Recombinant human cytochrome P4501B1 expression in Escherichia coli. Arch. Biochem. Biophys., 357, 111-120. https://doi.org/10.1006/abbi.1998.0808
  111. Shimada, T., Gillam, E.M., Sutter, T.R., Strickland, P.T., Guengerich, F.P. and Yamazaki, H. (1997) Oxidation of xenobiotics by recombinant human cytochrome P4501B1. Drug Metab. Dispos., 25, 617-622.
  112. Shimada, T., Yamazaki, H., Foroozesh, M., Hopkins, N.E., Alworth, W.L. and Guengerich, F.P. (1998) Selectivity of polycyclic inhibitors for human cytochrome P450s 1A1, 1A2, and 1B1. Chem. Res. Toxicol., 11, 1048-1056. https://doi.org/10.1021/tx980090+
  113. Rubin, H. (2001) Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: a bio-historical perspective with updates. Carcinogenesis, 22, 1903-1930. https://doi.org/10.1093/carcin/22.12.1903
  114. Marston, C.P., Pereira, C., Ferguson, J., Fischer, K., Hedstrom, O., Dashwood, W.M. and Baird, W.M. (2001) Effect of a complex environmental mixture from coal tar containing polycyclic aromatic hydrocarbons (PAH) on the tumor initiation, PAH-DNA binding and metabolic activation of carcinogenic PAH in mouse epidermis. Carcinogenesis, 22, 1077-1086. https://doi.org/10.1093/carcin/22.7.1077
  115. Mahadevan, B., Parsons, H., Musafia, T., Sharma, A.K., Amin, S., Pereira, C. and Baird, W.M. (2004) Effect of artificial mixtures of environmental polycyclic aromatic hydrocarbons present in coal tar, urban dust, and diesel exhaust particulates on MCF-7 cells in culture. Environ. Mol. Mutagen., 44, 99-107. https://doi.org/10.1002/em.20039
  116. Mahadevan, B., Marston, C.P., Dashwood, W.M., Li, Y., Pereira, C. and Baird, W.M. (2005) Effect of a standardized complex mixture derived from coal tar on the metabolic activation of carcinogenic polycyclic aromatic hydrocarbons in human cells in culture. Chem. Res. Toxicol., 18, 224-231. https://doi.org/10.1021/tx0497604
  117. Jarvis, I.W., Dreij, K., Mattsson, Å., Jernström, B. and Stenius, U. (2014) Interactions between polycyclic aromatic hydrocarbons in complex mixtures and implications for cancer risk assessment. Toxicology, 321, 27-39. https://doi.org/10.1016/j.tox.2014.03.012
  118. Foroozesh, M.K., Primrose, G., Guo, Z., Bell, L.C., Alworth, W.L. and Guengerich, F.P. (1997) Aryl acetylenes as mechanism- based inhibitors of cytochrome P450-dependent monooxygenase enzymes. Chem. Res. Toxicol., 10, 91-102. https://doi.org/10.1021/tx960064g
  119. Hopkins, N.E., Foroozesh, M.K. and Alworth, W.L. (1992) Suicide inhibitors of cytochrome P450 1A1 and P450 2B1. Biochem. Pharmacol., 44, 787-796. https://doi.org/10.1016/0006-2952(92)90417-H
  120. Foroozesh, M., Primrose, G., Guo, Z., Bell, L.C., Guengerich, F.P. and Alworth, W.L. (1997) Propynylaryl acetylenes as mechanism-based inhibitors of cytochrome P450 1A1, 1A2, and 2B1 enzymes. Chem. Res. Toxicol., 10, 91-102. https://doi.org/10.1021/tx960064g
  121. Arct, J. and Pytkowska, K. (2008) Flavonoids as components of biologically active cosmeceuticals. Clin. Dermatol., 26, 347-357. https://doi.org/10.1016/j.clindermatol.2008.01.004
  122. Kale, A., Gawande, S. and Kotwal, S. (2008) Cancer phytotherapeutics: role for flavonoids at the cellular level. Phytother. Res., 22, 567-577. https://doi.org/10.1002/ptr.2283
  123. Zhang, S., Yang, X., Coburn, R.A. and Morris, M.E. (2005) Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein. Biochem. Pharmacol., 70, 627-639. https://doi.org/10.1016/j.bcp.2005.05.017
  124. Walle, T. (2007) Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass? Semin. Cancer Biol., 17, 354-362. https://doi.org/10.1016/j.semcancer.2007.05.002
  125. Walle, U.K. and Walle, T. (2007) Bioavailable flavonoids: cytochrome P450-mediated metabolism of methoxyflavones. Drug Metab. Dispos., 35, 1985-1989. https://doi.org/10.1124/dmd.107.016782
  126. Hodek, P., Trefil, P. and Stiborova, M. (2002) Flavonoidspotent and versatile biologically active compounds interacting with cytochromes P450. Chem. Biol. Interact., 139, 1-21. https://doi.org/10.1016/S0009-2797(01)00285-X
  127. Chun, Y.J., Kim, S., Kim, D., Lee, S.K. and Guengerich, F.P. (2001) A new selective and potent inhibitor of human cytochrome P4501B1 and its application to antimutagenesis. Cancer Res., 61, 8164-8170.
  128. Mammen, J.S., Kleiner, H.E., DiGiovanni, J., Sutter, T.R. and Strickland, P.T. (2005) Coumarins are competitive inhibitors of cytochrome P450 1B1, with equal potency for allelic variants. Pharmacogenet. Genomics, 15, 183-188. https://doi.org/10.1097/01213011-200503000-00007
  129. Kim, H.J., Lee, S.B., Park, S.K., Kim, H.M., Park, Y.I. and Dong, M.S. (2005) Effects of hydroxy group numbers on the B-ring of 5,7-dihydroxyflavones on the differential inhibition of human CYP 1A and CYP1B1 enzymes. Arch. Pharm. Res., 28, 1114-1121. https://doi.org/10.1007/BF02972971
  130. Tsujimoto, M., Horie, M., Honda, H., Takara, K. and Nishiguchi, K. (2009) The structure-activity correlation on the inhibitory effects of flavonoids on cytochrome P450 3A activity. Biol. Pharm. Bull., 32, 671-676. https://doi.org/10.1248/bpb.32.671
  131. Doostdar, H., Burke, M.D. and Mayer, R.T. (2000) Bioflavonoids: selective substrates and inhibitors for cytochrome P450 CYP1A and CYP1B1. Toxicology, 144, 31-38. https://doi.org/10.1016/S0300-483X(99)00215-2
  132. Otake, Y. and Walle, T. (2002) Oxidation of the flavonoids galangin and kaempferide by human liver microsomes and CYP1A1, CYP1A2, and CYP2C9. Drug Metab. Dispos., 30, 103-105. https://doi.org/10.1124/dmd.30.2.103
  133. Si, D., Wang, Y., Zhou, Y.H., Guo, Y., Wang, J., Zhou, H., Li, Z.S. and Fawcett, J.P. (2008) Mechanism of CYP2C9 inhibition by flavones and flavonols. Drug Metab. Dispos., 37, 629-634.
  134. Zhai, S., Dai, R., Friedman, F.K. and Vestal, R.E. (1998) Comparative inhibition of human cytochromes P450 1A1 and 1A2 by flavonoids. Drug Metab. Dispos., 26, 989-992.
  135. Kimura, Y., Ito, H., Ohnishi, R. and Hatano, T. (2010) Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food Chem. Toxicol., 48, 429-435. https://doi.org/10.1016/j.fct.2009.10.041
  136. Quintieri, L., Palatini, P., Nassi, A., Ruzza, P. and Floreani, M. (2008) Flavonoids diosmetin and luteolin inhibit midazolam metabolism by human liver microsomes and recombinant CYP 3A4 and CYP3A5 enzymes. Biochem. Pharmacol., 75, 1426-1437. https://doi.org/10.1016/j.bcp.2007.11.012
  137. Roberts, D.W., Doerge, D.R., Churchwell, M.I., Gamboa da Costa, G., Marques, M.M. and Tolleson, W.H. (2004) Inhibition of extrahepatic human cytochromes P450 1A1 and 1B1 by metabolism of isoflavones found in Trifolium pratense (red clover). J. Agric. Food Chem., 52, 6623-6632. https://doi.org/10.1021/jf049418x
  138. Chiang, H.C., Wang, C.K. and Tsou, T.C. (2012) Differential distribution of CYP2A6 and CYP2A13 in the human respiratory tract. Respiration, 84, 319-326. https://doi.org/10.1159/000339591
  139. Zhu, L.R., Thomas, P.E., Lu, G., Reuhl, K.R., Yang, G.Y., Wang, L.D., Wang, S.L., Yang, C.S., He, X.Y. and Hong, J.Y. (2006) CYP2A13 in human respiratory tissues and lung cancers: an immunohistochemical study with a new peptide-specific antibody. Drug Metab. Dispos., 34, 1672-1676. https://doi.org/10.1124/dmd.106.011049
  140. Pelkonen, O., Rautio, A., Raunio, H. and Pasanen, M. (2000) CYP2A6: a human coumarin 7-hydroxylase. Toxicology, 144, 139-147. https://doi.org/10.1016/S0300-483X(99)00200-0
  141. Su, T., Bao, Z., Zhang, Q.Y., Smith, T.J., Hong, J.Y. and Ding, X. (2000) Human cytochrome P450 CYP2A13: Predominant exression in the respiratory tract and its high efficiency metabolic activation of a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res., 60, 5074-5079.
  142. Smith, B.D., Sanders, J.L., Porubsky, P.R., Lushington, G.H., Stout, C.D. and Scott, E.E. (2007) Structure of the human lung cytochrome P450 2A13. J. Biol. Chem., 282, 17306-17313. https://doi.org/10.1074/jbc.M702361200
  143. DeVore, N.M. and Scott, E.E. (2012) Nicotine and 4-(methylnitrosamino)- 1-(3-pyridyl)-1-butanone binding and access channel in human cytochrome P450 2A6 and 2A13 enzymes. J. Biol. Chem., 287, 26576-26585. https://doi.org/10.1074/jbc.M112.372813
  144. DeVore, N.M., Meneely, K.M., Bart, A.G., Stephens, E.S., Battaile, K.P. and Scott, E.E. (2012) Structural comparison of cytochromes P450 2A6, 2A13, and 2E1 with pilocarpine. FEBS J., 279, 1621-1631. https://doi.org/10.1111/j.1742-4658.2011.08412.x
  145. Yano, J.K., Hsu, M.H., Griffin, K.J., Stout, C.D. and Johnson, E.F. (2005) Structures of human microsomal cytochrome P450 2A6 complexed with coumarin and methoxsalen. Nat. Struct. Mol. Biol., 12, 822-823. https://doi.org/10.1038/nsmb971
  146. Sansen, S., Hsu, M.H., Stout, C.D. and Johnson, E.F. (2007) Structural insight into the altered substrate specificity of human cytochrome P450 2A6 mutants. Arch. Biochem. Biophys., 464, 197-206. https://doi.org/10.1016/j.abb.2007.04.028

Cited by

  1. CYP1B1 Activates Wnt/β-Catenin Signaling through Suppression of Herc5-Mediated ISGylation for Protein Degradation on β-Catenin in HeLa Cells vol.33, pp.3, 2017, https://doi.org/10.5487/TR.2017.33.3.211
  2. Oxidation of 1-chloropyrene by human CYP1 family and CYP2A subfamily cytochrome P450 enzymes: catalytic roles of two CYP1B1 and five CYP2A13 allelic variants pp.1366-5928, 2017, https://doi.org/10.1080/00498254.2017.1347306
  3. Cytochrome P450 2A6 and other human P450 enzymes in the oxidation of flavone and flavanone pp.1366-5928, 2019, https://doi.org/10.1080/00498254.2018.1426133
  4. The Inhibitory Effect of Flavonoid Aglycones on the Metabolic Activity of CYP3A4 Enzyme vol.23, pp.10, 2018, https://doi.org/10.3390/molecules23102553
  5. Site-specific oxidation of flavanone and flavone by cytochrome P450 2A6 in human liver microsomes pp.1366-5928, 2019, https://doi.org/10.1080/00498254.2018.1505064
  6. Novel sericin-based hepatocyte serum-free medium and sericin’s effect on hepatocyte transcriptome vol.24, pp.30, 2018, https://doi.org/10.3748/wjg.v24.i30.3398
  7. Tissue Distribution and Gender-Specific Protein Expression of Cytochrome P450 in five Mouse Genotypes with a Background of FVB vol.35, pp.6, 2018, https://doi.org/10.1007/s11095-018-2389-2
  8. functional analysis of human cytochrome P450 2A13 genetic variants: P450 2A13*2, *3, *4, and *10 vol.81, pp.12, 2018, https://doi.org/10.1080/15287394.2018.1460784