DOI QR코드

DOI QR Code

Inhalation Toxicity of Bisphenol A and Its Effect on Estrous Cycle, Spatial Learning, and Memory in Rats upon Whole-Body Exposure

  • Chung, Yong Hyun (Inhalation Toxicity Research Center, Chemical Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency) ;
  • Han, Jeong Hee (Inhalation Toxicity Research Center, Chemical Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency) ;
  • Lee, Sung-Bae (Inhalation Toxicity Research Center, Chemical Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency) ;
  • Lee, Yong-Hoon (Inhalation Toxicity Research Center, Chemical Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency)
  • Received : 2017.01.31
  • Accepted : 2017.03.14
  • Published : 2017.04.15

Abstract

Bisphenol A (BPA) is a monomer used in a polymerization reaction in the production of polycarbonate plastics. It has been used in many consumer products, including plastics, polyvinyl chloride, food packaging, dental sealants, and thermal receipts. However, there is little information available on the inhalation toxicity of BPA. Therefore, the aim of this study was to determine its inhalation toxicity and effects on the estrous cycle, spatial learning, and memory. Sprague-Dawley rats were exposed to 0, 10, 30, and $90mg/m^3$ BPA, 6 hr/day, 5 days/week for 8 weeks via whole-body inhalation. Mortality, clinical signs, body weight, hematology, serum chemistry, estrous cycle parameters, performance in the Morris water maze test, and organ weights, as well as gross and histopathological findings, were compared between the control and BPA exposure groups. Statistically significant changes were observed in serum chemistry and organ weights upon exposure to BPA. However, there was no BPA-related toxic effect on the body weight, food consumption, hematology, serum chemistry, organ weights, estrous cycle, performance in the Morris water maze test, or gross or histopathological lesions in any male or female rats in the BPA exposure groups. In conclusion, the results of this study suggested that the no observable adverse effect level (NOAEL) for BPA in rats is above $90mg/m^3$/6 hr/day, 5 days/week upon 8-week exposure. Furthermore, BPA did not affect the estrous cycle, spatial learning, or memory in rats.

Keywords

References

  1. Preethi, S., Sandhya, K., Esther Lebonah, D., Venkata Prasad, C., Sreedevi, B. and Pramoda Kumari, J. (2014) Toxicity of bisphenol a on humans: a review. Int. Lett. Nat. Sci., 27, 32-46. https://doi.org/10.18052/www.scipress.com/ILNS.27.32
  2. Staples, C.A., Dorn, P.B., Klecka, G.M., O'Block, S.T. and Harris, L.R. (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere, 36, 2149-2173. https://doi.org/10.1016/S0045-6535(97)10133-3
  3. World BPA production grew by over 372,000 tonnes in 2012. Available from: https://mcgroup.co.uk/news/20131108/bpaproduction-grew-372000-tonnes.html/.
  4. Rochester, J.R. (2013) Bisphenol A and human health: a review of the literature. Reprod. Toxicol., 42, 132-155. https://doi.org/10.1016/j.reprotox.2013.08.008
  5. Welshons, W.V., Nagel, S.C. and vom Saal, F.S. (2006) Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology, 147, S56-S69. https://doi.org/10.1210/en.2005-1159
  6. Lee, H.J., Chattopadhyay, S., Gong, E.Y., Ahn, R.S. and Lee, K. (2003) Antiandrogenic effects of bisphenol A andnonylphenol on the function of androgen receptor. Toxicol. Sci., 75, 40-46. https://doi.org/10.1093/toxsci/kfg150
  7. Wetherill, Y.B., Akingbemi, B.T., Kanno, J., McLachlan, J.A., Nadal, A., Sonnenschein, C., Watson, C.S., Zoeller, R.T. and Belcher, S.M. (2007) In vitro molecular mechanisms of bisphenol A action. Reprod. Toxicol., 24, 178-198. https://doi.org/10.1016/j.reprotox.2007.05.010
  8. Khurana, S., Ranmal, S. and Ben-Jonathan, N. (2000) Exposure of newborn male and female rats to environmental estrogens: delayed and sustained hyperprolactinemia and alterations in estrogen receptor expression. Endocrinology, 141, 4512-4517. https://doi.org/10.1210/endo.141.12.7823
  9. Kawato, S. (2004) Endocrine disrupters as disrupters of brain function: A neurosteroid viewpoint. Environ. Sci., 11, 1-14.
  10. Steinmetz, R., Mitchner, N.A., Grant, A., Allen, D.L., Bigsby, R.M. and Ben-Jonathan, N. (1998) The xenoestrogen bisphenol A induces growth, differentiation, and c-fos gene expression in the female reproductive tract. Endocrinology, 139, 2741-2747. https://doi.org/10.1210/endo.139.6.6027
  11. Colerangle, J.B. and Roy, D. (1997) Profound effects of the weak environmental estrogen-like chemicalbisphenol A on the growth of the mammary gland of noble rats. J. Steroid Biochem. Mol. Biol., 60, 153-160. https://doi.org/10.1016/S0960-0760(96)00130-6
  12. Richter, C.A., Birnbaum, L.S., Farabollini, F., Newbold, R.R., Rubin, B.S., Talsness, C.E., Vandenbergh, J.G., Walser-Kuntz, D.R. and vom Saal, F.S. (2007) In vivo effects of bisphenol A in laboratory rodent studies. Reprod. Toxicol., 24, 199-224. https://doi.org/10.1016/j.reprotox.2007.06.004
  13. Vandenberg, L.N., Hauser, R., Marcus, M., Olea, N. and Welshons, W.V. (2007) Human exposure to bisphenol A (BPA). Reprod. Toxicol., 24, 139-177. https://doi.org/10.1016/j.reprotox.2007.07.010
  14. Patisaul, H.B., Fortino, A.E. and Polston, E.K. (2006) Neonatal genistein or bisphenol-A exposure alters sexual differentiation of the AVPV. Neurotoxicol. Teratol., 28, 111-118. https://doi.org/10.1016/j.ntt.2005.11.004
  15. Rubin, B.S., Lenkowski, J.R., Schaeberle, C.M., Vandenberg, L.N., Ronsheim, P.M., and Soto, A.M. (2006) Evidence of altered brain sexual differentiation in mice exposed perinatally to low, environmentally relevant levels of bisphenol A. Endocrinology, 147, 3681-3691. https://doi.org/10.1210/en.2006-0189
  16. Kawai, K., Nozaki, T., Nishikata, H., Aou, S., Takii, M. and Kubo, C. (2003) Aggressive behavior and serum testosterone concentration during the maturation process of male mice: the effects of fetal exposure to bisphenol A. Environ. Health Perspect., 111, 175-178.
  17. Porrini, S., Belloni, V., Della Seta, D., Farabollini, F., Giannelli, G. and Dessì-Fulgheri, F. (2005) Early exposure to a low dose of bisphenol A affects socio-sexual behavior of juvenile female rats. Brain Res. Bull., 65, 261-266. https://doi.org/10.1016/j.brainresbull.2004.11.014
  18. Miyagawa, K., Narita, M., Narita, M., Akama, H. and Suzuki, T. (2007) Memory impairment associated with a dysfunction of the hippocampal cholinergic system induced by prenatal and neonatal exposures to bisphenol-A. Neurosci. Lett., 418, 236-241. https://doi.org/10.1016/j.neulet.2007.01.088
  19. Tian, Y.H, Baek, J.H., Lee, S.Y. and Jang, C.G. (2010) Prenatal and postnatal exposure to bisphenol a induces anxiolytic behaviors and cognitive deficits in mice. Synapse, 64, 432-439. https://doi.org/10.1002/syn.20746
  20. Xu, X.H., Zhang, J., Wang, Y.M., Ye, Y.P. and Luo, Q.Q. (2010) Perinatal exposure to bisphenol-A impairs learningmemory by concomitant down-regulation of N-methyl-Daspartate receptors of hippocampus in male offspring mice. Horm. Behav., 58, 326-333. https://doi.org/10.1016/j.yhbeh.2010.02.012
  21. Cox, K.H., Gatewood, J.D., Howeth, C. and Rissman, E.F. (2010) Gestational exposure to bisphenol A and cross-fostering affect behaviors in juvenile mice. Horm. Behav., 58, 754-761. https://doi.org/10.1016/j.yhbeh.2010.07.008
  22. Wolstenholme, J.T., Taylor, J.A., Shetty, S.R., Edwards, M., Connelly, J.J. and Rissman, E.F. (2011) Gestational exposure to low dose bisphenol A alters social behavior in juvenile mice. PLoS ONE, 6, e25448. https://doi.org/10.1371/journal.pone.0025448
  23. Nitschke, K.D., Lomax, L.G., Schuetz, D.J., Hopkins, P.J. and Weiss, S.K. (1988) Bisphenol A: 13-week aerosol toxicity study with Fischer 344 rats, Dow Chemical Company.
  24. Lee, Y.H., Kim, D., Lee, M.J., Kim, M.J., Jang, H.S., Park, S.H., Lee, J.M., Lee, H.Y., Park, C.B., Han, B.S., Son, W.C., Kang, J.S. and Kang, J.K. (2016) Subchronic toxicity of Acorus gramineus rhizoma in rats. J. Ethnopharmacol., 183, 46-53. https://doi.org/10.1016/j.jep.2016.02.037
  25. Song, J.C., Seo, M.K., Park, S.W., Lee, J.G. and Kim, Y.H. (2016) Differential effects of olanzapine and haloperidol on MK-801-induced memory Impairment in mice. Clin. Psychopharmacol. Neurosci., 14, 279-285. https://doi.org/10.9758/cpn.2016.14.3.279
  26. Tyl, R.W., Myers, C.B., Marr, M.C., Thomas, B.F., Keimowitz, A.R., Brine, D.R., Veselica, M.M., Fail, P.A., Chang, T.Y., Seely, J.C., Joiner, R.L., Butala, J.H., Dimond, S.S., Cagen, S.Z., Shiotsuka, R.N., Stropp, G.D. and Waechter, J.M. (2002) Three-generation reproductive toxicity study of dietary bisphenol A in CD Sprague-Dawley rats. Toxicol. Sci., 68, 121-146. https://doi.org/10.1093/toxsci/68.1.121
  27. Tyl, R.W., Myers, C.B., Marr, M.C., Sloan, C.S., Castillo, N.P., Veselica, M.M., Seely, J.C., Dimond, S.S., Van Miller, J.P., Shiotsuka, R.N., Beyer, D., Hentges, S.G. and Waechter, J.M., Jr. (2008) Two-generation reproductive toxicity study of dietary bisphenol A in CD-1 (Swiss) mice. Toxicol. Sci., 104, 362-384. https://doi.org/10.1093/toxsci/kfn084
  28. Morrissey, R.E., George, J.D., Price, C.J., Tyl, R.W., Marr, M.C. and Kimmel, C.A. (1987) The developmental toxicity of bisphenol A in rats and mice. Fundam. Appl. Toxicol., 8, 571-582. https://doi.org/10.1016/0272-0590(87)90142-4
  29. Kim, J.C., Shin, H.C., Cha, S.W., Koh, W.S., Chung, M.K. and Han, S.S. (2001) Evaluation of developmental toxicity in rats exposed to the environmental estrogen bisphenol A during pregnancy. Life Sci., 69, 2611-2625. https://doi.org/10.1016/S0024-3205(01)01341-8
  30. Alonso-Magdalena, P., Vieira, E., Soriano, S., Menes, L., Burks, D., Quesada, I. and Nadal, A. (2010) Bisphenol A exposure during pregnancy disrupts glucose homeostasis in mothers and adult male offspring. Environ. Health Perspect., 118, 1243-1250. https://doi.org/10.1289/ehp.1001993
  31. Ho, S.M., Tang, W.Y., Belmonte de Frausto, J. and Prins, G.S. (2006) Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res., 66, 5624-5632. https://doi.org/10.1158/0008-5472.CAN-06-0516
  32. Soto, A.M., Vandenberg, L.N., Maffini, M.V. and Sonnenschein, C. (2008) Does breast cancer start in the womb? Basic Clin. Pharmacol. Toxicol., 102, 125-133. https://doi.org/10.1111/j.1742-7843.2007.00165.x
  33. Weber Lozada, K. and Keri, R.A. (2011) Bisphenol A increases mammary cancer risk in two distinct mouse models of breast cancer. Biol. Reprod., 85, 490-497.
  34. Lewis, R.W., Billington, R., Debryune, E., Gamer, A., Lang, B. and Carpanini, F. (2002) Recognition of adverse and nonadverse effects in toxicity studies. Toxicol. Pathol., 30, 66-74. https://doi.org/10.1080/01926230252824725
  35. Nah, W.H., Park, M.J. and Gye, M.C. (2011) Effects of early prepubertal exposure to bisphenol A on the onset of puberty, ovarian weights, and estrous cycle in female mice. Clin. Exp. Reprod. Med., 38, 75-81. https://doi.org/10.5653/cerm.2011.38.2.75
  36. Matagne, V., Rasier, G., Lebrethon, M.C., Gerard, A. and Bourguignon, J.P. (2004) Estradiol stimulation of pulsatile gonadotropin-releasing hormone secretion in vitro: correlation with perinatal exposure to sex steroids and induction of sexual precocity in vivo. Endocrinology, 145, 2775-2783. https://doi.org/10.1210/en.2003-1259
  37. Tian, D., Xu, X.H., Ho, X., Chen, L., Xie, L.D. and Li, T. (2011) Effects of adulthood exposure to bisphenol-A on behaviors in mice. Acta Psychol. Sin., 43, 534-543.
  38. Jones, B.A. and Watson, N.V. (2012) Perinatal BPA exposure demasculinizes males in measures of affect but has no effect on water maze learning in adulthood. Horm. Behav., 61, 605-610. https://doi.org/10.1016/j.yhbeh.2012.02.011
  39. Isgor, C. and Sengelaub, D.R. (1998) Prenatal gonadal steroids affect adult spatial behavior, CA1 and CA3 pyramidal cell morphology in rats. Horm. Behav., 34, 183-198. https://doi.org/10.1006/hbeh.1998.1477
  40. Isgor, C. and Sengelaub, D.R. (2003) Effects of neonatal gonadal steroids on adult CA3 pyramidal neuron dendritic morphology and spatial memory in rats. J. Neurobiol., 55, 179-190. https://doi.org/10.1002/neu.10200
  41. Sohoni, P. and Sumpter, J.P. (1998) Several environmental oestrogens are also anti-androgens. J. Endocrinol., 158, 327-339. https://doi.org/10.1677/joe.0.1580327
  42. Leranth, C., Szigeti-Buck, K., Maclusky, N.J. and Hajszan, T. (2008) Bisphenol A prevents the synaptogenic response to testosterone in the brain of adult male rats. Endocrinology, 149, 988-994. https://doi.org/10.1210/en.2007-1053
  43. Xu, X., Liu, Y., Sadamatsu, M., Tsutsumi, S., Akaike, M., Ushijima, H. and Kato, N. (2007) Perinatal bisphenol A affects the behavior and SRC-1 expression of male pups but does not influence on the thyroid hormone receptors and its responsive gene. Neurosci. Res., 58, 149-155. https://doi.org/10.1016/j.neures.2007.02.011

Cited by

  1. Risk assessment of endocrine disrupting phthalates and hormonal alterations in children and adolescents vol.81, pp.21, 2018, https://doi.org/10.1080/15287394.2018.1543231
  2. Low Dose Exposure to Di-2-Ethylhexylphthalate in Juvenile Rats Alters the Expression of Genes Related with Thyroid Hormone Regulation vol.26, pp.5, 2018, https://doi.org/10.4062/biomolther.2018.076