DOI QR코드

DOI QR Code

Effect of Pt/Al2O3-based Catalysts on Removal Efficiency of Hydrogen

Pt/Al2O3계 촉매의 특성이 수소제어 활성에 미치는 영향 연구

  • Won, Jong Min (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Engineering, Kyonggi University)
  • 원종민 (경기대학교 환경에너지공학과 일반대학원) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Received : 2017.01.10
  • Accepted : 2017.02.18
  • Published : 2017.04.10

Abstract

In this study, a wet impregnation method was applied to catalysts based on the active metal Pt in order to confirm the oxidation characteristics of various commercial alumina supports at room temperature. The catalysts were characterized using XPS, CO-chemisorption, and BET. Various $Pt/Al_2O_3$ catalysts controlled the oxygen species of Pt by the electronegativity of electrons and charges when the catalyst was prepared according to the heat treatment conditions. The reason that the dispersion degree decreases with increasing Pt loading seems to be attributed to HT (Huttig Temperature) of Pt. In addition, the minimum hydrogen concentration that can be controlled at room temperature can control hydrogen from metallic Pt up to 1.0 vol% at over 70.09% in the catalyst.

본 연구에서는 다양한 상용 알루미나 지지체의 수소 상온산화 반응특성을 확인하기 위하여 활성금속 Pt를 기본으로 한 촉매에 습식함침법으로 제조하였다. 제조된 촉매들은 XPS, CO-chemisorption, BET를 이용하여 특성분석을 수행하였다. 다양한 $Pt/Al_2O_3$계 촉매는 열처리 조건에 따라서 촉매를 제조할 경우 전자 전하의 이동으로 발생하는 전기음성도 특성이 Pt의 산소종을 제어하였다. Pt의 담지량이 증가함에 따라 분산도가 감소하는 이유는 Pt의 HT (Huttig Temperature)에 기인한 것으로 보인다. 또한 상온에서 제어할 수 있는 최소 수소농도는 metallic Pt가 촉매 내 70.09% 이상에서 1.0 vol%까지 수소를 제어할 수 있었다.

Keywords

References

  1. P. Biswas and C. Y. Wu, Control of toxic metal emissions from combustors using sorbents: A review, J. Air Waste Manege. Assoc., 48, 113-127 (1998). https://doi.org/10.1080/10473289.1998.10463657
  2. Y. S. Kang, S. S. Kim, H. D. Lee, J. K. Kim, and S. C. Hong, A study on SOx emission characteristics in coal combustion, Appl. Chem. Eng., 22, 219-223 (2011).
  3. Y. S. Kang, S. S. Kim, H. D. Lee, J. K. Kim, and S. C. Hong, Characteristics of fundamental combustion and NOx emission using various rank coals, J. Air Waste Manag. Assoc., 22, 219-223 (2011).
  4. M. Rinnemo, O. Deutschmann, F. Behrendt, and B. Kasemo, Experimental and numerical investigation of the catalytic ignition of mixtures of hydrogen and oxygen on platinum, Combust. Flame, 111, 312-326 (1997). https://doi.org/10.1016/S0010-2180(97)00002-3
  5. E. A. Reinecke, I. M. Tragsdorf, and K. Gierling, Studies on innovative hydrogen recombiners as safety devices in the containments of light water reactors, Nucl. Eng. Des., 230, 49-59 (2004). https://doi.org/10.1016/j.nucengdes.2003.10.009
  6. J. Deng and X. W. Cao, A study in evaluating a passive autocatalytic recombiner PAR-system in the PWR large-dry containment, Nucl. Eng. Des., 238, 2554-2560 (2008). https://doi.org/10.1016/j.nucengdes.2008.04.011
  7. E. Bachellerie, F. Arnould, M. Auglaire, B. Boeck, O. Braillard, B. Eckardt, F. Ferroni, and R. Moffett, Generic approach for designing and implementing a passive autocatalytic recombiner PAR-system in nuclear power plant containments, Nucl. Eng. Des., 238, 2554-2560 (2008). https://doi.org/10.1016/j.nucengdes.2008.04.011
  8. P. Royl, H. Rochholz, W. Breitung, J. R. Travis, and G. Necker, Analysis of steam and hydrogen distributions with PAR mitigation in NPP containments, Nucl. Eng. Des., 202, 231-248 (2000). https://doi.org/10.1016/S0029-5493(00)00332-0
  9. N. E. Fernands, Y. K. Park, and D. G. Vlachos, The autothermal behaviour of platinum catalyzed hydrogen oxidation: experimentals and modeling, Combust. Flame, 118, 164-178 (1999). https://doi.org/10.1016/S0010-2180(98)00162-X
  10. L. Liu, B. Qiao, Y. He, F. Zhou, B. Yang, and Y. Deng, Catalytic co-oxidation of CO and $H_2$ over FeOx-supported Pd catalyst at low temperature, J. Catal., 294, 29-36 (2012). https://doi.org/10.1016/j.jcat.2012.06.018
  11. B. Qiao, A. Wang, M. Takahashi, Y. Zhang, J. Wang, and Y. Deng, A novel Au&Pd/Fe(OH)x catalyst for CO+$H_2$ co-oxidation at low temperatures, J. Catal., 279, 361-365 (2011). https://doi.org/10.1016/j.jcat.2011.02.005
  12. S. Proch, J. Herrmannsdorfer, R. Kempe, C. Kern, A. Jess, L. Seyfarth, and J. Senker, Pt@MOF-177: Synthesis, room-temperature hydrogen storage and oxidation catalysis, Chem. Eur. J., 14, 8204-8212 (2008). https://doi.org/10.1002/chem.200801043
  13. M. Chen, Z. L. Pei, C. Sun, L. S. Wen, and X. Wang, Formation of Al-doped ZnO films by dc magnetron reaction sputtering, Mater. Lett., 48, 194-198 (2001). https://doi.org/10.1016/S0167-577X(00)00302-5
  14. A. S. Ivanova, E. M. Slavinskaya, R. V. Gulyaev, V. I. Zaikovskii, O. A. Stonkus, I. G. Danilova, L. M. Plyasova, I. A. Polukhina, and A. I. Boronin, Metal-support interactions in Pt/$Al_2O_3$ and Pd/$Al_2O_3$ catalysts for CO oxidation, Appl. Catal. B, 97, 57-71 (2010). https://doi.org/10.1016/j.apcatb.2010.03.024
  15. T. Huizinga, H. F. J. Van't Blik, J. C. Vis, and R. Prins, XPS investigation of Pt and Rh supported on ${\gamma}$-$Al_2O_3$ and $TiO_2$, Surf. Sci., 135, 580-596 (1983). https://doi.org/10.1016/0039-6028(83)90243-1
  16. J. T. Richardson, Principles of Catalyst Development, Plenum Press, NY, USA (1989).