DOI QR코드

DOI QR Code

Examination of Applicability of Liquefaction Potential Index to Seismic Vulnerability Evaluation of the Korean River Levees

액상화 가능 지수의 국내 하천제방 지진취약도 평가 적용성 검토

  • Ha, Iksoo (Department of Civil Engineering, Kyungnam University) ;
  • Moon, Injong (Korea Institute of Civil Engineering & Building Technology) ;
  • Yun, Jungwon (Department of Geospace Engrg., University of Science & Technology) ;
  • Han, Jintae (Korea Institute of Civil Engineering & Building Technology)
  • Received : 2017.02.20
  • Accepted : 2017.03.21
  • Published : 2017.04.01

Abstract

In this study, a simple method to evaluate the seismic vulnerability of river levees was examined considering the structural characteristic of river levee, that is long, and the functional characteristic of river levee that performs temporary function against flood but is a permanent structure in the ordinary way. Considering the fact that one of the main failure modes of the levee during the earthquake are the settlement due to the strength reduction of the ground caused by the increase of the excess pore pressure in the levee body and foundation and the settlement due to liquefaction, the 2-dimensional section of the levee was regarded as the 1-dimensional section and the liquefaction potential index (LPI) for the regarded section was estimated. The estimated LPI was correlated with the seismic vulnerability of river levees. The relationship between the displacement of the levee crest caused by the earthquake and the seismic vulnerability of the levees was obtained from the results of previous researches and the correlation between the displacements of the levee crest computed by 2-dimensional dynamic coupled analyses and LPIs based on the results of 1-dimensional seismic response analyses was investigated. In connection with this correlation, as a result of examination of the correlation between LPI and the seismic vulnerability of the levee, it was concluded that the method for evaluation of the seismic vulnerability of the Korean river levee using LPI is applicable.

본 연구에서는 하천제방이 홍수 때를 대비한 임시적인 기능이 크나 영구구조물이라는 기능적 특성과 길이가 매우 길다는 구조적 특성을 감안하여, 제방의 지진취약도를 간편하게 평가할 수 있는 방안을 검토하였다. 제방의 지진 시 주된 파괴모드가 제체 및 기초지반의 과잉간극수압 증가로 야기되는 지반의 강도감소 및 액상화로 인한 제체 침하인 점에 착안하여, 2차원 형태의 제방단면을 1차원으로 간주하고 액상화 가능 지수를 산정한 후, 그 결과를 지진 시 하천제방의 취약도와 연관시키는 방안을 검토하였다. 지진으로 야기된 제방 정상부의 변위와 제방의 지진취약도와의 관계를 기존 연구결과로부터 획득하였고, 2차원 동적 유효응력해석을 수행하여 산정한 제방 정상부 변위와 1차원 지진응답해석 결과를 기초로 산정한 액상화 가능 지수와의 상관관계를 검토하였다. 이러한 상관관계와 연계하여, 궁극적으로 액상화 가능 지수와 제방 지진취약도와의 연관성을 검토한 결과, 액상화 가능 지수를 이용한 국내 하천제방의 지진취약도를 평가하는 방법이 적용성이 있는 것으로 판단되었다.

Keywords

References

  1. 건설교통부 (2003), 금호강 금호지구외 1개지구 하천개수공사, 부산지방국토관리청, pp. 44-111.
  2. 대통령령 제27792호 (2017), 지진.화산재해대책법 시행령 제 10조 제1항.
  3. 한국건설기술연구원 (2015), 다중시나리오 기반 재난대응의 사결정지원 체계(DRiMSS) 기술 개발 2차년도 별책보고서, pp. 244-263.
  4. 해양수산부 (1999), 항만 및 어항시설의 내진설계표준서, 해양수산부, pp. 92.
  5. Atukorala, U., Hawson, H., Mylleville, B. and Williams, R. (2014), Seismic design guidelines for dikes, 2nd Edition, Ministry of Forests, Lands and Natural Resources Operations Flood Safety Section, Golder Associates, June, pp. 11-12.
  6. Byrne, P. M. (1991), A cyclic shear-volume coupling and porepressure model for sand, Proceedings of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, Paper No.1.24, pp. 47-55.
  7. Chopra, A. K. (1995), Dynamics of structures : Theory and Application of Earthquake Engineering, Prentice-Hall, Inc., pp. 416-421.
  8. Chung, J. W. and Rogers, J. D. (2011), Simplified method for spatial evaluation of liquefaction potential in the St. Louis area, J. of Geotech. Geoenviron. Eng., Vol. 137, No. 5, pp. 505-515. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000450
  9. Holzer, T. L. (2008), Probabilistic liquefaction hazard mapping, Proc. of 4th Conference on Geotechnical Earthquake Engineering and Soil Dynamics, ASCE, Sacramento, CA., pp. 1-32.
  10. Idriss, I. M. (1990), Response of soft soil sites during earthquakes, Proc. H. Bolton Seed Memorial Symposium, J.M. Duncan (editor), Vol. 2, pp. 273-290.
  11. Iwasaki, T., Tatsuoka, F., Tokida, K. and Yasuda, S. (1978), A practical method for assessing soil liquefaction potential based on case studies at various sites in Japan, Proc. of the 2 nd International Conference on Microzonation, San Francisco, pp. 885-896.
  12. Itasca Consulting Group (2011), FLAC-Fast Lagrangian analysis of continua, Version 7.0, Itasca Consulting Group, Inc., Minneaplois, Minnesota. USA.
  13. Kim, H. and Chung, C. (2016), Integrated system for sit-specific earthquake hazard assessment with geotechnical spatial grid information based on Gis, Natural Hazard, Vol. 82, pp. 981- 1007. https://doi.org/10.1007/s11069-016-2230-3
  14. Kim, J. H., Lee, J. H., Lee, Y. J. and Kim, J. K. (2015), Piecewise linear envelope function for synthetic ground acceleration due to intra-plate earthquakes, Proceedings of EESK Conference 2015, Earthquake Engineering Society of Korean, pp. 187-188 (in Korean).
  15. Lee, D. H., Ku, C. S. and Yuan, H. (2003), A study of the liquefaction risk potential at Yuanlin, Taiwan, Eng. Geol., Vol. 71, pp. 97-117.
  16. Mauer, B. W., Green, R. A., Cubrinovski, M. and Bradley, B. A. (2014), Evaluation of the liquefaction potential index for assessing liquefaction hazard in Christchurch, New Zealand, J. of Geotech. Geoenviron. Eng., Vol. 140, No. 7, pp. 1-11. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000996
  17. Millet, R., Chowdhury, K., Julian, E., Green, R., Seed, R., Balakrishnan, A. and Perlea, V. (2014), Seismic vulnerability evaluation of levees in California's Central Valley, Annual Conference Proceedings-Association of State Dam Safety Officials, San Diego, CA, pp. 482-502.
  18. Seed, H. B. and Idriss, I. M. (1971), Simplified procedure for evaluating soil liquefaction potential, Journal of Soil Mechanics and Foundation Engineering, ASCE, Vol. 97, pp. 1249-1273.
  19. Seed, H., Wong, R., Idriss, I. and Tokimatsu, K. (1986), Moduli and damping factors for dynamic analysis of cohesionless soils, Journal of Geotechnical Engineering, ASCE, Vol. 112, No. 11, pp. 1016-1103. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1016)
  20. Schnabel, P. B., Lysmer, J. and Seed, H. B. (1972), SHAKE: A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites, Report No. EERC 71-12, Earthquake Engineering Research Center, Univ. of California Berkeley, California.
  21. Seo, M. W., Sun, C. G. and Oh, M. H. (2009), LPI-based assessment of liquefaction potential on the West Coastal Region of Korea, Journal of the Earthquake Engineering Society of Korea, EESK, Vol. 13, No. 4, pp. 1-13 (in Korean).
  22. Swaisgood, J. R. (2003), Embankment dam deformations caused by earthquakes, Proc. 2003 Pacific Conference on Earthquake Engineering, Seattle, Washington, pp. 1-8.
  23. Youd, T. L., Idriss, I. M., Andrus, R. D., Arango, I., Castro, G., Christian, J. T., Dobry, R., Finn, W. D. L., Harder Jr. L. F., Hynes, M. E., Ishihara, K., Koester, J. P., Liao, S. S. C., Marcuson III, W. F., Martin, G. R., Mitchell, J. K., Moriwaki, Y., Power, M. S., Robertson, P. K., Seed, R. B. and Stokoe II, K. H. (2001), Liquefaction resistance of soils: summary report from the 1996 NCEER and 1988 NCEER/NSF workshops on evaluation of liquefaction resistance of soils, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 1271, pp. 816-833.