DOI QR코드

DOI QR Code

Effect of Alkyl Length of Cationic Surfactants on Desorption of Cs From Contaminated Clay

양이온 계면활성제의 알킬사슬에 따른 오염 점토 내 Cs 탈착 특성 연구

  • Received : 2017.01.04
  • Accepted : 2017.03.02
  • Published : 2017.03.30

Abstract

In this study, desorption characteristics of Cs from clay according to the hydrophobic alkyl chain length of the cationic surfactant were investigated. Alkyltrimethylammonium bromide was used as a cationic surfactant, and the length of the hydrophobic alkyl chain of the cationic surfactant was varied from -octyl to -cetyl. The adsorbed amount of the cationic surfactant on montmorillonite increased with the length of the hydrophobic alkyl chain, and intercalation of the cationic surfactant into the clay interlayer increased the interlayer distances. The Cs removal efficiency was also enhanced with increasing alkyl chain length, and the cationic surfactant with the cetyl group showed a maximum Cs removal efficiency of $992{\pm}2.9%$.

본 연구에서는 오염된 점토 내 Cs을 제거하기 위하여, 계면활성제의 소수성 알킬사슬의 길이에 따른 Cs의 탈착특성을 연구하였다. 양이온성 계면활성제로 Alkyl trimethyl ammonium bromide를 사용하였고, 소수성 알킬사슬은 octyl-, dodecyl-, cetyl- 으로 변화시켰다. 소수성 알킬사슬이 길어질수록 montmorillonite 내 계면활성제의 흡착량이 증가하였고, 계면활성제의 층간 흡착으로 층간거리가 증가하는 것으로 나타났다. Cs의 탈착률도 알킬사슬의 길이가 증가함에 따라 향상되었고 cetyl 그룹을 갖는 양이온성 계면활성제는 최대 $992{\pm}2.9%$의 Cs 제거율을 나타냈다.

Keywords

References

  1. D. Ding, Z. Zhang, Z. Lei, Y. Yang, and T. Cai, "Remediation of radiocesium-contaminated liquid waste, soil, and ash: a mini review since the Fukushima Daiichi Nuclear Power Plant accident", Environ. Sci. Pollut. Res., 23, 2249-2263 (2016). https://doi.org/10.1007/s11356-015-5825-4
  2. T. Yamamoto, "Radioactivity of fission product and heavy nuclides deposited on soil in Fukushima Dai-Ichi Nuclear Power Plant accident", J. Nucl. Sci. Technol., 49, 1116-1133 (2012). https://doi.org/10.1080/00223131.2012.740355
  3. C. Poinssot, B. Baeyens, and M.H. Bradbury, "Experimental and modelling studies of caesium sorption on illite", Geochim. Cosmochim. Acta, 63, 3217-3227 (1999). https://doi.org/10.1016/S0016-7037(99)00246-X
  4. M. Okumura, H. Nakamura, and M. Machida, "Mechanism of Strong Affinity of Clay Minerals to Radioactive Cesium: First-Principles Calculation Study for Adsorption of Cesium at Frayed Edge Sites in Muscovite", J. Phys. Soc. Japan, 82, 33802 (2013). https://doi.org/10.7566/JPSJ.82.033802
  5. H. Mukai, T. Hatta, H. Kitazawa, H. Yamada, T. Yaita, and T. Kogure, "Speciation of Radioactive Soil Particles in the Fukushima Contaminated Area by IP Autoradiography and Microanalyses", Environ. Sci. Technol., 48, 13053-13059 (2014). https://doi.org/10.1021/es502849e
  6. Y.K. Kim, K.M. Kim, H.J. Jung, H.D. Kang, and W. Kim et al., "Chracteristics of sediment compositions and Cs adsorption on marine sediment near Wuljin nuclear powerplant", Econ. Environ. Geol, 38, 689-697 (2005).
  7. T.H. Wang, M.H. Li, Y.Y. Wei, and S.P. Teng, "Desorption of cesium from granite under various aqueous conditions", Appl. Radiat. Isot., 68, 2140-2146 (2010). https://doi.org/10.1016/j.apradiso.2010.07.005
  8. B.C. Bostick, M.A. Vairavamurthy, K.G. Karthikeyan, and J. Chorover, "Cesium adsorption on clay minerals: An EXAFS spectroscopic investigation", Environ. Sci. Technol., 36, 2670-2676 (2002). https://doi.org/10.1021/es0156892
  9. Y. Kim, R.T. Cygan, and R.J. Kirkpatrick, "133Cs NMR and XPS investigation of cesium adsorbed on clay minerals and related phases", Geochim. Cosmochim. Acta, 60, 1041-1052 (1996). https://doi.org/10.1016/0016-7037(95)00452-1
  10. H.D. Whitley and D.E. Smith, "Free energy, energy, and entropy of swelling in Cs-, Na-, and Sr-montmorillonite clays", J. Chem. Phys., 120, 5387-5395 (2004). https://doi.org/10.1063/1.1648013
  11. S.M.L. Hardie and I.G. Mckinley, "Fukushima remediation: status and overview of future plans", J. Environ. Radioact., 133, 75-85 (2014). https://doi.org/10.1016/j.jenvrad.2013.08.002
  12. K. Fukushi, H. Sakai, T. Itono, A. Tamura, and S. Arai, "Desorption of intrinsic cesium from smectite: Inhibitive effects of clay particle organization on cesium desorption", Environ. Sci. Technol., 48, 10743-10749 (2014). https://doi.org/10.1021/es502758s
  13. K. Fukushi and T. Fukiage, "Prediction of Intrinsic Cesium Desorption from Na-Smectite in Mixed Cation Solutions", Environ. Sci. Technol., 49, 10398-10405 (2015). https://doi.org/10.1021/acs.est.5b01884
  14. C.N. Hsu and K.P. Chang, "Sorption and desorption behavior of cesium on soil components", Appl. Radiat. Isot., 45, 433-437 (1994). https://doi.org/10.1016/0969-8043(94)90107-4
  15. C.W. Park, B.H. Kim, H.M. Yang, B.K. Seo, and J.K. Moon et al., "Removal of cesium ions from clays by cationic surfactant intercalation", Chemosphere, 168, 1068-1074 (2017). https://doi.org/10.1016/j.chemosphere.2016.10.102
  16. C.W. Park, B.H. Kim, H.M. Yang, B.K. Seo, and K.W. Lee, "Enhanced desorption of Cs from clays by a polymeric cation-exchange agent", J. Hazard. Mater. (2017), in press.
  17. J. Shang, M. Flury, J.B. Harsh, and R.L. Zollars, "Contact angles of aluminosilicate clays as affected by relative humidity and exchangeable cations", Aspects, 353, 1-9 (2010). https://doi.org/10.1016/j.colsurfa.2009.10.013
  18. S. Xu and S.A. Boyd, "Cationic Surfactant Adsorption by Swelling and Nonswelling Layer Silicates", Langmuir, 11, 2508-2514 (1996).
  19. I. Langmuir, " The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids.", J. Am. Chem. Soc., 38, 2221-2295 (1916). https://doi.org/10.1021/ja02268a002
  20. G. Lagaly, "Interaction of alkylamines with different types of layered compounds", Solid State Ionlcs, 22, 43-51 (1986). https://doi.org/10.1016/0167-2738(86)90057-3
  21. E.M. Daoudi, Y. Boughaleb, L. El. Gaini, I. Meghea, and M.Bakasse, "Modeling of alkyl quaternary ammonium cations intercalated into montmorillonite lattice", Mater. Res. Bull., 48, 1824-1829 (2013). https://doi.org/10.1016/j.materresbull.2013.01.026
  22. R. Zhu, L. Zhu, J. Zhu, and L. Xu, "Structure of cetyltrimethylammonium intercalated hydrobiotite", Appl. Clay Sci., 42, 224-231 (2007).
  23. S.Y. Lee and S.J. Kim, "Expansion of smectite by hexadecyltrimethylammonium", Clays Clay Miner., 50 (2002).
  24. L.B. Paiva, A.R. Morales, and F.R. Valenzuela Diaz, "Organoclays: Properties, preparation and applications", Appl. Clay Sci., 42, 8-24 (2008). https://doi.org/10.1016/j.clay.2008.02.006
  25. G. Lagaly, "Characterization of clays by organic compounds", Clay Miner., 16, 1-21 (1981). https://doi.org/10.1180/claymin.1981.016.1.01
  26. H. Mukai, A. Hirose, S. Motai, R. Kikuchi, and K. Tanoi et al., "Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima", Sci. Rep., 6, 21543 (2016). https://doi.org/10.1038/srep21543
  27. L. Dzene, E. Tertre, F. Hubert, and E. Ferrage, "Nature of the sites involved in the process of cesium desorption from vermiculite", J. Colloid Interface Sci., 455, 254-260 (2015). https://doi.org/10.1016/j.jcis.2015.05.053

Cited by

  1. The Role of SDS Surfactant in The Synthesis of Polymer Hybrid Latex Poly-(St-co-BA-co-MMA) with OMMT as Filler via Mini-Emulsion Polymerization vol.515, pp.None, 2019, https://doi.org/10.1088/1757-899x/515/1/012059
  2. Behaviors of Desorption Agents During Removal of Cs From Clay Minerals and Actual Soil vol.19, pp.1, 2017, https://doi.org/10.7733/jnfcwt.2021.19.1.39