DOI QR코드

DOI QR Code

Geomechanical Stability Analysis of Potential Site for Domestic Pilot CCS Project

국내 이산화탄소 지중격리저장 실증실험 후보부지의 역학적 안정성 평가 기초해석

  • 김아람 (세종대학교 공과대학 에너지자 원공학과) ;
  • 김형목 ;
  • 김현우 (한국지질자원연구원 전략기술연구본부 심지층연구단) ;
  • 신영재 (한국지질자원연구원 석유해저연구본부)
  • Received : 2017.04.07
  • Accepted : 2017.04.26
  • Published : 2017.04.30

Abstract

For a successful performance of Carbon Capture Sequestration (CCS) projects, appropriate injection conditions should be designed to be optimized for site specific geological conditions. In this study, we built a simple 2-dimensional analysis model, based on the geology of Jang-gi basin which is one of the potential sites of domestic CCS projects. We evaluated the impact of initial stress conditions and injection rate through coupled TOUGH-FLAC simulator. From the preliminary analysis, we constructed risk scenarios with the higher potential of shear slip and performed scenario analysis. Our analysis showed that normal stress regime produced the highest potential of shear slip and stepwise increasing injection rate scenario resulted in much larger pore pressure build up and consequent higher potential of the shear slip, which was evaluated using a mobilized friction coefficient.

이산화탄소 지중저장 사업의 성공적인 수행을 위해서는 저장시스템의 안정성을 확보할 수 있는 대상 지층을 선정하고 현장 지질조건에 최적화된 주입 조건을 설계해야 한다. 본 연구에서는 국내 실증실험 대상 예상후보지의 하나인 장기분지의 지질구조를 바탕으로 2차원 간략해석모델을 구축하고 TOUGH-FLAC 연계해석기법을 사용하여 초기응력조건과 주입량이 이산화탄소 격리저장시스템에 미치는 영향을 분석하였다. 기초해석 결과, 수직응력이 수평응력보다 우세한 정단층 응력조건에서 전단미끄러짐 가능성이 가장 높은 결과를 보였으며, 단위시간당 주입량을 달리하는 주입량 시나리오 해석에서는 주입량을 단계적으로 증가시켜 주입하는 경우가 공극압의 증가폭이 가장 크고 활동마찰계수를 이용한 전단미끄러짐 가능성 평가 결과에서도 가장 불리한 것으로 평가되었다.

Keywords

References

  1. 권이균, 신영재, 김지환. (2012), CO2 지중저장사업 예비 타당성조사 지식경제부 사전심의를 위한 기획연구, 한국지질자원연구원
  2. 김민철, 김용식, 손의영, 손문, 황인걸, 신영재, 최헌수. (2015). 한반도 남동부 마이오세 장기분지 내 $CO_2$ 지중저장 가능성 평가를 위한 지질구조/퇴적학 연구. 지질학회지, 51(3), 253-271.
  3. 박의섭, 김현우, 천대성, 최헌수. (2012). $CO_2$ 지중저장의 암반공학적 해결과제, 2012 한국자원공학회 추계학술발표회 CCS 특별세션, pp. 84-96.
  4. 한국지질자원연구원, 2016, 국내 육상 1만톤급 $CO_2$ 지중 저장 실증 연구 연차보고서.
  5. Cappa, F., & Rutqvist, J. (2011). Impact of $CO_2$ geological sequestration on the nucleation of earthquakes. Geophysical Research Letters, 38(17).
  6. Chae, K. S., Lee, S. P., Yoon, S. W., & Matsuoka, T. (2010). Trends of Underground $CO_2$ Storage Technology for the Large Scale Reduction of GHG. TUNNEL AND UNDERGROUND SPACE, 20(5), 309-317.
  7. Itasca Consulting Group Inc., 2012, FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) Version 5.0 (Minneapolis, MN).
  8. Kim, A.R. (2017). Stability analysis of deep underground sequestration system of CO2 under uncertain in-situ geologic conditions using hydro-mechanically coupled analysis, MSc thesis, Sejong University, Seoul, Korea.
  9. Kim, A.R., & Kim, H.M.(2016). Scenario Analysis of Injection Temperature and Injection Rate for Assessing the Geomechanical Stability of CCS (Carbon Capture and Sequestration) System. TUNNEL AND UNDERGROUND SPACE, 26(1), 12-23. https://doi.org/10.7474/TUS.2016.26.1.012
  10. Kim, H., Cheon, D. S., Choi, B. H., Choi, H. S., & Park, E. S. (2013). Case Study on Stability Assessment of Pre-existing Fault at $CO_2$ Geologic Storage. TUNNEL AND UNDERGROUND SPACE, 23(1), 13-30. https://doi.org/10.7474/TUS.2013.23.1.013
  11. Kim, H. M., Park, E. S., Synn, J. H., & Park, Y. C. (2008). Greenhouse Gas (CO2) Geological Sequestration and Geomechanical Technology Component. TUNNEL AND UNDERGROUND SPACE, 18(3), 175-184.
  12. Kim, H. M., & Bae, W. S. (2013). Enhanced Oil Recovery (EOR) Technology Coupled with Underground Carbon Dioxide Sequestration. TUNNEL AND UNDERGROUND SPACE, 23(1), 1-12. https://doi.org/10.7474/TUS.2013.23.1.001
  13. Kim, H. M., Rutqvist, J., & Bae, W. S. (2014). Sensitivity analysis for fault reactivation in potential $CO_2$-EOR site with multi-layers of permeable and impermeable formations. Geosystem Engineering, 17(5), 253-263. https://doi.org/10.1080/12269328.2014.972577
  14. Hawkes, C. D., Bachu, S., Haug, K., & Thompson, A. W. (2005, May). Analysis of in-situ stress regime in the Alberta Basin, Canada, for performance assessment of $CO_2$ geological sequestration sites. In Proceedings of the fourth annual conference on carbon capture and sequestration DOE/NETL, May (pp. 2-5).
  15. Lucier, A., & Zoback, M. (2008). Assessing the economic feasibility of regional deep saline aquifer CO2 injection and storage: A geomechanics-based workflow applied to the Rose Run sandstone in Eastern Ohio, USA. International Journal of Greenhouse Gas Control, 2(2), 230-247. https://doi.org/10.1016/j.ijggc.2007.12.002
  16. Mazzoldi, A., Rinaldi, A. P., Borgia, A., & Rutqvist, J. (2012). Induced seismicity within geological carbon sequestration projects: maximum earthquake magnitude and leakage potential from undetected faults. International journal of greenhouse gas control, 10, 434-442. https://doi.org/10.1016/j.ijggc.2012.07.012
  17. Pruess, K., Oldenburg, C., & Moridis, G. (1999). TOUGH2 User's guid, Ver. 2.0., Lawrence Berkeley National Laboratory Report LBL-43134, Berkeley, CA, USA.
  18. Pruess, K. (2011). ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2. LBNL-4291E, Berkeley, Berkeley, CA
  19. Rinaldi, A. P., Vilarrasa, V., Rutqvist, J., & Cappa, F. (2015). Fault reactivation during CO2 sequestration: Effects of well orientation on seismicity and leakage. Greenhouse Gases: Science and Technology, 5(5), 645-656. https://doi.org/10.1002/ghg.1511
  20. Rutqvist, J., Birkholzer, J. T., & Tsang, C. F. (2008). Coupled reservoir-geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir-caprock systems. International Journal of Rock Mechanics and Mining Sciences, 45(2), 132-143. https://doi.org/10.1016/j.ijrmms.2007.04.006
  21. Rutqvist, J. (2011). Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations. Computers & Geosciences, 37(6), 739-750. https://doi.org/10.1016/j.cageo.2010.08.006
  22. Streit, J. E., & Hillis, R. R. (2004). Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock. Energy, 29(9), 1445-1456. https://doi.org/10.1016/j.energy.2004.03.078
  23. Vilarrasa, V., Olivella, S., Carrera, J., & Rutqvist, J. (2014). Long term impacts of cold CO2 injection on the caprock integrity. International Journal of Greenhouse Gas Control, 24, 1-13. https://doi.org/10.1016/j.ijggc.2014.02.016