DOI QR코드

DOI QR Code

Canna edulis Leaf Extract-Mediated Preparation of Stabilized Silver Nanoparticles: Characterization, Antimicrobial Activity, and Toxicity Studies

  • Otari, S.V. (Department of Chemical Engineering, Konkuk University) ;
  • Pawar, S.H. (Center for Interdisciplinary Research, D. Y. Patil University) ;
  • Patel, Sanjay K.S. (Department of Chemical Engineering, Konkuk University) ;
  • Singh, Raushan K. (Department of Chemical Engineering, Konkuk University) ;
  • Kim, Sang-Yong (Department of Food Science and Biotechnology, Shin-Ansan University) ;
  • Lee, Jai Hyo (Department of Mechanical Engineering, Konkuk University) ;
  • Zhang, Liaoyuan (Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, College of Life Sciences, Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University) ;
  • Lee, Jung-Kul (Department of Chemical Engineering, Konkuk University)
  • Received : 2016.10.10
  • Accepted : 2017.01.11
  • Published : 2017.04.28

Abstract

A novel approach to synthesize silver nanoparticles (AgNPs) using leaf extract of Canna edulis Ker-Gawl. (CELE) under ambient conditions is reported here. The as-prepared AgNPs were analyzed by UV-visible spectroscopy, transmission emission microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, energy-dispersive analysis of X-ray spectroscopy, zeta potential, and dynamic light scattering. The AgNPs showed excellent antimicrobial activity against various pathogens, including bacteria and various fungi. The biocompatibility of the AgNPs was analyzed in the L929 cell line using NRU and MTT assays. Acridine orange/ethidium bromide staining was used to determine whether the AgNPs had necrotic or apoptotic effects on L929 cells. The concentration of AgNPs required for 50% inhibition of growth of mammalian cells is far more than that required for inhibition of pathogenic microorganisms. Thus, CELE is a candidate for the eco-friendly, clean, cost-effective, and nontoxic synthesis of AgNPs.

Keywords

References

  1. Kim TS, Patel SKS, Selvaraj C, Jung WS, Pan CH, Kang YC, Lee J-K. 2016. A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization. Sci. Rep. 6: 33438. https://doi.org/10.1038/srep33438
  2. Patel SKS, Jeong J-H, Mehariya S, Otari SV, Madan B, Haw JR, et al. 2016. Production of methanol from methane by encapsulated Methylosinus sporium. J. Microbiol. Biotechnol. 26: 2098-2105. https://doi.org/10.4014/jmb.1608.08053
  3. Patel SKS, Choi SH, Kang YC, Lee JK. 2016. Large-scale aerosol-assisted synthesis of biofriendly $Fe_2O_3$ yolkshell particles: a promising support for enzyme immobilization. Nanoscale 8: 6728-6738. https://doi.org/10.1039/C6NR00346J
  4. Patel SKS, Mardina P, Kim S-Y, Lee J-K, Kim I-W. 2016. Biological methanol production by a type II methanotroph Methylocystis bryophila. J. Microbiol. Biotechnol. 26: 717-724. https://doi.org/10.4014/jmb.1601.01013
  5. Patel SKS, Mardina P, Kim D, Kim S-Y, Kalia VC, Kim I-W, Lee J-K. 2016. Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas. Bioresour. Technol. 218: 202-208. https://doi.org/10.1016/j.biortech.2016.06.065
  6. Vorobyova SA, Lesnikovich AI, Sobal NS. 1999. Preparation of silver nanoparticles by interphase reduction. Colloids Surf. A Physicochem. Eng. Asp. 152: 375-379. https://doi.org/10.1016/S0927-7757(98)00861-9
  7. Dahl JA, Maddux BLS, Hutchison JE. 2007. Toward greener nanosynthesis. Chem. Rev. 107: 2228-2269. https://doi.org/10.1021/cr050943k
  8. Dimitrijevic NM, Bartels DM, Jonah CD, Takahashi K, Rajh T. 2001. Radiolytically induced formation and optical absorption spectra of colloidal silver nanoparticles in supercritical ethane. J. Phys. Chem. B 105: 954-959. https://doi.org/10.1021/jp0028296
  9. Petit C, Lixon P, Pileni MP. 1993. In-situ synthesis of silver nanocluster in AOT reverse micelles. J. Phys. Chem. 97: 12974-12983. https://doi.org/10.1021/j100151a054
  10. Lee J-K, Kim I-W, Kim T-S, Choi J-H, Kim J-H, Park S-H. 2014. Immunological activities of cationic methylan derivatives. J. Kor. Soc. Appl. Biol. Chem. 57: 319-321. https://doi.org/10.1007/s13765-013-4312-1
  11. Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L. 2007. Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem. 9: 852-858. https://doi.org/10.1039/b615357g
  12. Sandmann G, Dietz H, Plieth W. 2000. Preparation of silver nanoparticles on ITO surfaces by a double-pulse method. J. Electroanal. Chem. 491: 78-86. https://doi.org/10.1016/S0022-0728(00)00301-6
  13. Patel SKS, Kalia VC, Choi JH, Haw JR, Kim IW, Lee JK. 2014. Immobilization of laccase on SiO2 nanocarriers improves its stability and reusability. J. Microbiol. Biotechnol. 24: 639-647. https://doi.org/10.4014/jmb.1401.01025
  14. Smetana AB, Klabunde KJ, Sorensen CM. 2005. Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation. J. Colloid Interface Sci. 284: 521-526. https://doi.org/10.1016/j.jcis.2004.10.038
  15. Bar H, Bhui DK, Sahoo GP, Sarkar P, Sankar PD, Misra A. 2009. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf. A Physicochem. Eng. Asp. 339: 134-139. https://doi.org/10.1016/j.colsurfa.2009.02.008
  16. Mardina P, Li J, Patel SKS, Kim I-W, Lee J-K, Selvaraj C. 2016. Potential of immobilized whole-cell Methylocella tundrae as a biocatalyst for methanol production from methane. J. Microbiol. Biotechnol. 26: 1234-1241. https://doi.org/10.4014/jmb.1602.02074
  17. Magudapathy P, Gangopadhyay P, Panigrahi BK, Nair KGM, Dhara S. 2001. Electrical transport studies of Ag nanoclusters embedded in glass matrix. Physica B Condens. Matter 299: 142-146. https://doi.org/10.1016/S0921-4526(00)00580-9
  18. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346-2353. https://doi.org/10.1088/0957-4484/16/10/059
  19. Zhao Z, Ramachandran P, Choi JH, Lee J-K, Kim I-W. 2013. Purification and characterization of a novel $\beta$-1,3/1,4-glucanase from Sistotrema brinkmannii HQ717718. J. Kor. Soc. Appl. Biol. Chem. 56: 263-270. https://doi.org/10.1007/s13765-013-3028-6
  20. Kumar V, Yadav SK. 2008. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol. 84: 151-157.
  21. Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO. 2002. Biomimetic synthesis and patterning of silver nanoparticles. Nat. Mater. 1: 169-172. https://doi.org/10.1038/nmat758
  22. Zhang J, Wang ZW, Mi Q. 2011. Phenolic compounds from Canna edulis Ker residue and their antioxidant activity. LWT Food Sci. Technol. 44: 2091-2096. https://doi.org/10.1016/j.lwt.2011.05.021
  23. Woradulayapinij W, Soonthornchareonnon N, Wiwat C. 2005. In vitro HIV type 1 reverse transcriptase inhibitory activities of Thai medicinal plants and Canna indica L. rhizomes. J. Ethnopharmacol. 101: 84-89. https://doi.org/10.1016/j.jep.2005.03.030
  24. Cui L, Ouyang Y, Lou Q, Lou Q, Yang F, Chen Y, Zhu W, Luo S. 2010. Removal of nutrients from wastewater with Canna indica L. under different vertical-flow constructed wetland conditions. Ecol. Eng. 36: 1083-1088. https://doi.org/10.1016/j.ecoleng.2010.04.026
  25. Otari SV, Yadav HM, Thorat HM, Patil RM, Lee JK, Pawar SH. 2016. Facile one pot synthesis of core shell $Ag@SiO_2$ nanoparticles for catalytic and antimicrobial activity. Mater. Lett. 167: 179-182. https://doi.org/10.1016/j.matlet.2015.12.134
  26. Otari SV, Patil RM, Nadaf NH, Ghosh SJ, Pawar SH. 2012. Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp. Mater. Lett. 72: 92-94. https://doi.org/10.1016/j.matlet.2011.12.109
  27. Patel SKS, Selvaraj C, Mardina P, Jeong J-H, Kalia VC, Kang Y-C, Lee J-K. 2016. Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization. Appl. Energy 171: 383-391. https://doi.org/10.1016/j.apenergy.2016.03.022
  28. Jha AK, Prasad K. 2010. Green synthesis of silver nanoparticles using Cycas Leaf. Int. J. Green Nanotechnol. Phys. Chem. 1: 110-117. https://doi.org/10.1080/19430871003684572
  29. Keki S, Török J, Deak G, Daroczi L, Zsuga M. 2000. Silver nanoparticles by PAMAM-assisted photochemical reduction of Ag(+). J. Colloid Interface Sci. 229: 550-553. https://doi.org/10.1006/jcis.2000.7011
  30. Otari SV, Patil RM, Nadaf NH, Ghosh SJ, Pawar SH. 2014. Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application. Environ. Sci. Pollut. Res. 21: 1503-1513. https://doi.org/10.1007/s11356-013-1764-0
  31. Shetty PR, Kumar BS, Kumar YS, Shankar GG. 2012. Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus. J. Microbiol. Biotechnol. 22: 614-621. https://doi.org/10.4014/jmb.1107.07013
  32. Gole A, Dash C, Ramakrishnan V, Sainkar SR, Mandale AB, Rao M, Sastry M. 2001. Pepsin-gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir 17: 1674-1679. https://doi.org/10.1021/la001164w
  33. Sastry M, Mayya KS, Bandyopadhyay K. 1997. pH Dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloids Surf. A Physicochem. Eng. Asp. 127: 221-228. https://doi.org/10.1016/S0927-7757(97)00087-3
  34. Ramachandran P, Jagtap SS, Patel SKS, Li J, Kang YC, Lee J-K. 2016. Role of the non-conserved amino acid asparagine 285 in the glycone-binding pocket of Neosartorya fischeri $\beta$-glucosidase. RSC Adv. 6: 48137-48144. https://doi.org/10.1039/C5RA28017F
  35. Malvern Instruments. 2011. Zeta potential: an introduction in 30 minutes. Zetasizer Nano Series Tech. Note MRK654-01. 2: 1-6.
  36. Dhanasekar NN, Rahul GR, Narayanan KB, Raman G, Sakthivel N. 2015. Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J. Microbiol. Biotechnol. 25: 1129-1135. https://doi.org/10.4014/jmb.1410.10036
  37. Kvítek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, et al. 2008. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles. J. Phys. Chem. C 112: 5825-5834. https://doi.org/10.1021/jp711616v
  38. Jena J, Pradhan N, Nayak RR, Dash BP, Sukla LB, Panda PK, Mishra BK. 2014. Microalga Scenedesmus sp.: a potential low-cost green machine for silver nanoparticle synthesis. J. Microbiol. Biotechnol. 24: 522-533. https://doi.org/10.4014/jmb.1306.06014
  39. Pal S, Tak YK, Song JM. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73: 1712-1720. https://doi.org/10.1128/AEM.02218-06
  40. Otari SV, Patel SKS, Jeong JH, LeeJH, Lee JK. 2016. A green chemistry approach for synthesizing thermostable antimicrobial peptide-coated gold nanoparticles immobilized in an alginate biohydrogel. RSC Adv. 6: 86808-86816. https://doi.org/10.1039/C6RA14688K
  41. Renvoize C, Biola A, Pallardy M, Bre J. 1998. Apoptosis: identification of dying cells. Cell Biol. Toxicol. 14: 111-120. https://doi.org/10.1023/A:1007429904664

Cited by

  1. Nanoparticles in Biological Hydrogen Production: An Overview vol.58, pp.1, 2017, https://doi.org/10.1007/s12088-017-0678-9
  2. Immobilization of Xylanase Using a Protein-Inorganic Hybrid System vol.28, pp.4, 2018, https://doi.org/10.4014/jmb.1710.10037
  3. Comparison of Antimicrobial Properties of Silver Nanoparticles Synthesized from Selected Bacteria vol.58, pp.3, 2017, https://doi.org/10.1007/s12088-018-0723-3
  4. Antimicrobial and Catalytic Activities of Green Synthesized Silver Nanoparticles Using Bay Laurel (Laurus nobilis) Leaves Extract vol.10, pp.1, 2017, https://doi.org/10.4236/jbnb.2019.101003
  5. Antimicrobial Activity of Amino-Derivatized Cationic Polysaccharides vol.59, pp.1, 2017, https://doi.org/10.1007/s12088-018-0764-7
  6. Antimicrobial Activity of Compounds Containing Silver Nanoparticles and Calcium Glycerophosphate in Combination with Tyrosol vol.59, pp.2, 2017, https://doi.org/10.1007/s12088-019-00797-y
  7. Effective Inhibition of Phytopathogenic Microbes by Eco-Friendly Leaf Extract Mediated Silver Nanoparticles (AgNPs) vol.59, pp.3, 2017, https://doi.org/10.1007/s12088-019-00801-5
  8. Flower Shaped Gold Nanoparticles: Biogenic Synthesis Strategies and Characterization vol.59, pp.3, 2019, https://doi.org/10.1007/s12088-019-00804-2
  9. Bioelectrochemical Detoxification of Phenolic Compounds during Enzymatic Pre-Treatment of Rice Straw vol.29, pp.11, 2019, https://doi.org/10.4014/jmb.1909.09042
  10. Biocidal Activity of Metal Nanoparticles Synthesized by Fusarium solani against Multidrug-Resistant Bacteria and Mycotoxigenic Fungi vol.30, pp.2, 2017, https://doi.org/10.4014/jmb.1906.06070
  11. Phomopsis tersa as Inhibitor of Quorum Sensing System and Biofilm Forming Ability of Pseudomonas aeruginosa vol.60, pp.1, 2017, https://doi.org/10.1007/s12088-019-00840-y
  12. Green Synthesis and Characterization of Highly Stable Silver Nanoparticles from Ethanolic Extracts of Fruits of Annona muricata vol.30, pp.4, 2020, https://doi.org/10.1007/s10904-019-01262-5
  13. Silver Nanoparticles Induce a Triclosan-Like Antibacterial Action Mechanism in Multi-Drug Resistant Klebsiella pneumoniae vol.12, pp.None, 2021, https://doi.org/10.3389/fmicb.2021.638640
  14. Enhanced Reactive Blue 4 Biodegradation Performance of Newly Isolated white rot fungus Antrodia P5 by the Synergistic Effect of Herbal Extraction Residue vol.12, pp.None, 2017, https://doi.org/10.3389/fmicb.2021.644679
  15. Nanostructured Antimicrobial Peptides: Crucial Steps of Overcoming the Bottleneck for Clinics vol.12, pp.None, 2017, https://doi.org/10.3389/fmicb.2021.710199
  16. Novel Hybrid Compounds Containing Benzofuroxan and Aminothiazole Scaffolds: Synthesis and Evaluation of Their Anticancer Activity vol.22, pp.14, 2017, https://doi.org/10.3390/ijms22147497