DOI QR코드

DOI QR Code

Development and Application of Cation-exchange Membranes Including Chelating Resin for Efficient Heavy-metal Ion Removal

효율적인 중금속 이온 제거를 위한 킬레이팅 수지를 포함한 양이온 교환막의 개발 및 응용

  • Kim, Do-Hyeong (Department of Green Chemical Engineering, Sangmyung University) ;
  • Choi, Young-Eun (Department of Green Chemical Engineering, Sangmyung University) ;
  • Park, Jin-Soo (Department of Green Chemical Engineering, Sangmyung University) ;
  • Kang, Moon-Sung (Department of Green Chemical Engineering, Sangmyung University)
  • 김도형 (상명대학교 그린화학공학과) ;
  • 최영은 (상명대학교 그린화학공학과) ;
  • 박진수 (상명대학교 그린화학공학과) ;
  • 강문성 (상명대학교 그린화학공학과)
  • Received : 2017.03.21
  • Accepted : 2017.03.29
  • Published : 2017.04.30

Abstract

In this study, we have developed cation-exchange membranes (CEMs) which can efficiently separate heavy-metal ions among the cations contained in a water system. Sulfonated polyetheretherketone (SPEEK) was used as a base polymer and a powdered chelating resin with strong binding ability to heavy-metal ions was added into it. In order to optimize the performance of the CEM, the content of chelating resin powder and the ion exchange capacity of SPEEK have been controlled. As a result, it was confirmed that the removal efficiency of heavy metal ion was improved by more than 20% by applying the CEM to membrane capacitive deionization (MCDI).

본 연구에서는 수계 내 포함된 양이온들 중 특히 중금속 이온을 효율적으로 분리할 수 있는 양이온 교환막을 개발하였다. 기저 고분자로는 sulfonated polyetheretherketone (SPEEK)를 사용하였으며 이에 중금속 이온에 결합력이 강한 킬레이팅 수지를 파우더링하여 첨가하였다. 또한 양이온 교환막의 성능을 최적화시키기 위해 킬레이팅 수지의 함량 및 SPEEK의 이온교환용량을 제어하였다. 결과적으로 제조된 양이온 교환막을 막 축전식 탈염 공정(membrane capacitive deionization, MCDI)에 적용한 결과 중금속 이온 제거 효율이 20% 이상 향상됨을 확인할 수 있었다.

Keywords

References

  1. H. Li and L. Zou, "Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination", Desalination, 275, 62 (2011). https://doi.org/10.1016/j.desal.2011.02.027
  2. Y. Zhao, Y. Wang, R. Wang, Y. Wu, S. Xu, and J. Wang, "Performance comparison and energy consumption analysis of capacitive deionization processes", Desalination, 324, 127 (2013). https://doi.org/10.1016/j.desal.2013.06.009
  3. C. Huyskens, J. Helsen, and A. B. de Haan, "Capacitive deionization for water treatment: Screening of key performance parameters and comparison of performance for different ions", Desalination, 328, 8 (2013). https://doi.org/10.1016/j.desal.2013.07.002
  4. Y. A. C. Jande and W. S. Kim, "Desalination using capacitive deionization at constant current", Desalination, 329, 29 (2013). https://doi.org/10.1016/j.desal.2013.08.023
  5. R. Zhao, O. Satpradit, H. H. M. Rijnaarts, P. M. Biesheuvel, and A. V. Wal, "Optimization of salt adsorption rate in membrane capacitive deionization", Water Res., 47, 1941 (2013). https://doi.org/10.1016/j.watres.2013.01.025
  6. P. M. Biesheuvel, R. Zhao, S. Porada, and A. V. Wal, "Theory of membrane capacitive deionization including the effect of the electrode pore space", J. Colloid Interface Sci., 360, 239 (2011). https://doi.org/10.1016/j.jcis.2011.04.049
  7. Y.-J. Kim, J.-H. Kim, and J.-H. Choi, "Selective removal of nitrate ions by controlling the applied current in membrane capacitive deionization (MCDI)", J. Membr. Sci., 429, 52 (2013). https://doi.org/10.1016/j.memsci.2012.11.064
  8. S. Porada, M. Bryjak, A. V. Wal, and P. M. Biesheuvel, "Effect of electrode thickness variation on operation of capacitive deionization", Electrochim. Acta, 75, 148 (2012). https://doi.org/10.1016/j.electacta.2012.04.083
  9. H. Li, L. Zou, L. Pan, and Z. Sun, "Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization", Sep. Purif. Technol., 75, 8 (2010). https://doi.org/10.1016/j.seppur.2010.07.003
  10. T. J. Welgemoed and C. F. Schutte, "Capacitive Deionization Technology: An alternative desalination solution", Desalination, 183, 327 (2005). https://doi.org/10.1016/j.desal.2005.02.054
  11. C.-H. Hou and C.-Y. Hyang, "A comparative study of electro sorption selectivity of ions by activated carbon electrodes in capacitive deionization", Desalination, 314, 124 (2013). https://doi.org/10.1016/j.desal.2012.12.029
  12. W. K. Son, T. I. Kim, H. J. Han, and K. S. Kang, "The study of capacitive deionization technology by the analysis of patents and papers", Korean Chem. Eng. Res., 49, 697 (2011). https://doi.org/10.9713/kcer.2011.49.6.697
  13. K.-S. Shin, T.-W. Yi, J.-H. Cha, Y.-D. Lim, S.-K. Park, K.-S. Kang, and E.-Y. Song, "The removal characteristics of dissolved solid in wastewater during a capacitive deionization process", J. Korean Soc. Water Wastewater, 28, 151 (2014). https://doi.org/10.11001/jksww.2014.28.2.151
  14. Y.-J. Kim and J.-H. Choi, "Desalination of brackish water by capacitive deionization system combined with ion-exchange membrane", Appl. Chem. Eng., 21, 87 (2010).
  15. J.-H. Cha, K.-S. Shin, J.-C. Lee, S.-K. Park, N.-S. Park, and E.-Y. Song, "Feasibility study on double path capacitive deionization process for advanced wastewater treatment", J. Kor. Soc. Environ. Eng., 36, 295 (2014). https://doi.org/10.4491/KSEE.2014.36.4.295
  16. D.-J. Lee, M.-S. Kang, S.-H. Lee, and J.-S. Park, "Application of capacitive deionization for desalination of mining water", Membr. J., 17, 37 (2014).
  17. J.-H. Choi, H.-J. Lee, and S.-M. Moon, "Effects of Electrolytes on the transport phenomena in a cation-exchange membrane", J. Colloid Interface Sci., 238, 188 (2001). https://doi.org/10.1006/jcis.2001.7510
  18. C. O. Park and J. W. Rhim, "Performance of capacitive deionization process using polyvinylidene fluoride heterogeneous ion exchange membranes", Membr. J., 27, 84 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.1.84
  19. Y.-J. Kim and J.-H. Choi, "Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane", Sep. Purif. Technol., 71, 70 (2010). https://doi.org/10.1016/j.seppur.2009.10.026
  20. Y.-J. Kim and J.-H. Choi, "Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer", Water Res., 44, 990 (2010). https://doi.org/10.1016/j.watres.2009.10.017
  21. Y.-J. Kim and J.-H. Choi, "Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization", Water Res., 46, 6033 (2012). https://doi.org/10.1016/j.watres.2012.08.031
  22. P. Liang, L. Yuan, X. Yang, S. Zhou, and X. Huang, "Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination", Water Res., 47, 2523 (2013). https://doi.org/10.1016/j.watres.2013.02.037
  23. E. Guler, W. V. Baak, M. Saakes, and K. Nijmeijer, "Monovalent-ion-selective membranes for reverse electrodialysis", J. Membr. Sci., 455, 254 (2014). https://doi.org/10.1016/j.memsci.2013.12.054
  24. G. M. Geise, D. R. Paul, and B. D. Freeman, "Fundamental water and salt transport properties of polymeric materials", Prog. Polym. Sci., 39, 1 (2014). https://doi.org/10.1016/j.progpolymsci.2013.07.001
  25. J.-H. Choi and C.-M. Park, "Fabrication and electrochemical characterization of ion-selective composite carbon electrode coated with sulfonated poly(ether ether ketone)", Appl. Chem. Eng., 24, 247 (2013).
  26. D.-H. Kim and M.-S. Kang, "Improvement of capacitive deionization performance by coating quaternized poly(phenylene oxide)", Membr. J., 24, 332 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.332
  27. D.-H. Kim, J.-S. Park, and M.-S. Kang, "Controlling water splitting characteristics of anion-exchange membranes by coating imidazolium polymer", Membr. J., 25, 152 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.152