DOI QR코드

DOI QR Code

Crystal Structure of the Regulatory Domain of AphB from Vibrio vulnificus, a Virulence Gene Regulator

  • Park, Nohra (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Song, Saemee (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Garam (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Jang, Kyung Ku (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Jo, Inseong (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Sang Ho (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Ha, Nam-Chul (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • Received : 2017.02.02
  • Accepted : 2017.04.07
  • Published : 2017.04.30

Abstract

The transcriptional activator AphB has been implicated in acid resistance and pathogenesis in the food borne pathogens Vibrio vulnificus and Vibrio cholerae. To date, the full-length AphB crystal structure of V. cholerae has been determined and characterized by a tetrameric assembly of AphB consisting of a DNA binding domain and a regulatory domain (RD). Although acidic pH and low oxygen tension might be involved in the activation of AphB, it remains unknown which ligand or stimulus activates AphB at the molecular level. In this study, we determine the crystal structure of the AphB RD from V. vulnificus under aerobic conditions without modification at the conserved cysteine residue of the RD, even in the presence of the oxidizing agent cumene hydroperoxide. A cysteine to serine amino acid residue mutant RD protein further confirmed that the cysteine residue is not involved in sensing oxidative stress in vitro. Interestingly, an unidentified small molecule was observed in the inter-subdomain cavity in the RD when the crystal was incubated with cumene hydroperoxide molecules, suggesting a new ligand-binding site. In addition, we confirmed the role of AphB in acid tolerance by observing an aphB-dependent increase in cadC transcript level when V. vulnificus was exposed to acidic pH. Our study contributes to the understanding of the AphB molecular mechanism in the process of recognizing the host environment.

Keywords

References

  1. Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213-221. https://doi.org/10.1107/S0907444909052925
  2. Horseman, M.A., and Surani, S. (2011). A comprehensive review of Vibrio vulnificus: an important cause of severe sepsis and skin and soft-tissue infection. Int. J. Infect Dis. 15, e157-166. https://doi.org/10.1016/j.ijid.2010.11.003
  3. Jang, K.K., Gil, S.Y., Lim, J.G., and Choi, S.H. (2016). Regulatory Characteristics of Vibrio vulnificus gbpA Gene Encoding a Mucin-binding Protein Essential for Pathogenesis. J. Biol. Chem. 291, 5774-5787. https://doi.org/10.1074/jbc.M115.685321
  4. Jeong, H.G., and Choi, S.H. (2008). Evidence that AphB, essential for the virulence of Vibrio vulnificus, is a global regulator. J. Bacteriol. 190, 3768-3773. https://doi.org/10.1128/JB.00058-08
  5. Kantardjieff, K.A., and Rupp, B. (2003). Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Sci. 12, 1865-1871. https://doi.org/10.1110/ps.0350503
  6. Kovacikova, G., Lin, W., and Skorupski, K. (2010). The LysR-type virulence activator AphB regulates the expression of genes in Vibrio cholerae in response to low pH and anaerobiosis. J. Bacteriol. 192, 4181-4191. https://doi.org/10.1128/JB.00193-10
  7. Kovacikova, G., and Skorupski, K. (1999). A Vibrio cholerae LysR homolog, AphB, cooperates with AphA at the tcpPH promoter to activate expression of the ToxR virulence cascade. J. Bacteriol. 181, 4250-4256.
  8. Krukonis, E.S., Yu, R.R., and Dirita, V.J. (2000). The Vibrio cholerae ToxR/TcpP/ToxT virulence cascade: distinct roles for two membranelocalized transcriptional activators on a single promoter. Mol. Microbiol. 38, 67-84. https://doi.org/10.1046/j.1365-2958.2000.02111.x
  9. Lee, M.A., Kim, J.A., Yang, Y.J., Shin, M.Y., Park, S.J., and Lee, K.H. (2014). VvpM, an extracellular metalloprotease of Vibrio vulnificus, induces apoptotic death of human cells. J. Microbiol. 52, 1036-1043. https://doi.org/10.1007/s12275-014-4531-0
  10. Lim, J.G., Park, J.H., and Choi, S.H. (2014). Low cell density regulator AphA upregulates the expression of Vibrio vulnificus iscR gene encoding the Fe-S cluster regulator IscR. J. Microbiol. 52, 413-421. https://doi.org/10.1007/s12275-014-3592-4
  11. Liu, Z., Yang, M., Peterfreund, G.L., Tsou, A.M., Selamoglu, N., Daldal, F., Zhong, Z., Kan, B., and Zhu, J. (2011). Vibrio cholerae anaerobic induction of virulence gene expression is controlled by thiol-based switches of virulence regulator AphB. Proc. Natl. Acad. Sci. USA 108, 810-815. https://doi.org/10.1073/pnas.1014640108
  12. Liu, Z., Wang, H., Zhou, Z., Naseer, N., Xiang, F., Kan, B., Goulian, M., and Zhu, J. (2016) Differential Thiol-Based Switches Jump-Start Vibrio cholerae Pathogenesis. Cell Rep. 14, 347-354. https://doi.org/10.1016/j.celrep.2015.12.038
  13. Merrell, D.S., and Camilli, A. (2000). Regulation of vibrio cholerae genes required for acid tolerance by a member of the "ToxR-like" family of transcriptional regulators. J. Bacteriol. 182, 5342-5350. https://doi.org/10.1128/JB.182.19.5342-5350.2000
  14. Milton, D. L., O'Toole, R., Horstedt, P., and Wolf-Watz, H. (1996). Flagellin A is essential for the virulence of Vibrio anguillarum. J. Bacteriol. 178, 1310-1319 https://doi.org/10.1128/jb.178.5.1310-1319.1996
  15. Miroux, B., and Walker, J.E. (1996). Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289-298. https://doi.org/10.1006/jmbi.1996.0399
  16. Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326.
  17. Park, J.H., Jo, Y., Jang, S.Y., Kwon, H., Irie, Y., Parsek, M.R., Kim, M.H., and Choi, S.H. (2015). The cabABC operon essential for biofilm and rugose colony development in vibrio vulnificus. PLoS Pathogens 11, e1005252. https://doi.org/10.1371/journal.ppat.1005252
  18. Park, S., Ha, S., and Kim, Y. (2017) The protein crystallography beamlines at the pohang light source ll. BIODESIGN 5, 30-34.
  19. Patel, V.P., Rojas, M.R., Paplomatas, E.J., and Gilbertson, R.L. (1993). Cloning biologically active geminivirus DNA using PCR and overlapping primers. Nucleic Acids Res. 21, 1325-1326. https://doi.org/10.1093/nar/21.5.1325
  20. Rhee, J.E., Kim, K.S., and Choi, S.H. (2005). CadC activates pHdependent expression of the Vibrio vulnificus cadBA operon at a distance through direct binding to an upstream region. J. Bacteriol. 187, 7870-7875. https://doi.org/10.1128/JB.187.22.7870-7875.2005
  21. Rhee, J.E., Jeong, H.G., Lee, J.H., and Choi, S.H. (2006). AphB influences acid tolerance of Vibrio vulnificus by activating expression of the positive regulator CadC. J. Bacteriol. 188, 6490-6497. https://doi.org/10.1128/JB.00533-06
  22. Simon, R., Priefer, U., and Phuler, A. (1983). A broad host range mobilization system for invivo genetic-engineering - transposon mutagenesis in gram-negative bacteria. Bio-Technol. 1, 784-791. https://doi.org/10.1038/nbt1183-784
  23. Taylor, J.L., De Silva, R.S., Kovacikova, G., Lin, W., Taylor, R.K., Skorupski, K., and Kull, F.J. (2012). The crystal structure of AphB, a virulence gene activator from Vibrio cholerae, reveals residues that influence its response to oxygen and pH. Mol. Microbiol. 83, 457-470. https://doi.org/10.1111/j.1365-2958.2011.07919.x
  24. Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G., McCoy, A., et al. (2011). Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235-242. https://doi.org/10.1107/S0907444910045749
  25. Wright, A. C., Simpson, L. M., Oliver, J. D., and Morris, J. G. (1990). Phenotypic evaluation of acapsular transposon mutants of Vibrio vulnificus. Infect. Immun. 58, 1769-1773

Cited by

  1. The Global Acetylome of the Human Pathogen Vibrio cholerae V52 Reveals Lysine Acetylation of Major Transcriptional Regulators vol.7, pp.2235-2988, 2018, https://doi.org/10.3389/fcimb.2017.00537
  2. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data vol.19, pp.1, 2017, https://doi.org/10.1186/s12859-018-2486-6
  3. STRUCTURAL STUDIES OF TRANSCRIPTIONAL REGULATION BY LysR-TYPE TRANSCRIPTIONAL REGULATORS IN BACTERIA vol.6, pp.None, 2018, https://doi.org/10.7831/ras.6.105
  4. A Novel Tetrameric Assembly Configuration in VV2_1132, a LysR-Type Transcriptional Regulator in Vibrio vulnificus vol.41, pp.4, 2017, https://doi.org/10.14348/molcells.2018.2190