DOI QR코드

DOI QR Code

Applicability of Natural Zeolite with Different Cation Exchange Capacity as In-situ Capping Materials for Adsorbing Heavy Metals

중금속 흡착을 위한 원위치 피복소재로서 천연제올라이트의 양이온교환용량에 따른 적용성 평가

  • Kang, Ku (Research Institute of Agricultural & Environmental Science, Hankyong National University) ;
  • Shin, Weon-Ho (Energy Materials Center, Energy & Environment Division, Korea Institute of Ceramic Engineering & Technology) ;
  • Hong, Seong-Gu (Department of Bioresources & Rural systems Engineering, Hankyong National University) ;
  • Kim, Young-Kee (Department of Chemical Engineering, Hankyong National University) ;
  • Park, Seong-Jik (Department of Bioresources & Rural systems Engineering, Hankyong National University)
  • 강구 (한경대학교 농촌환경과학연구소) ;
  • 신원호 (한국세라믹기술원 에너지환경소재본부) ;
  • 홍성구 (한경대학교 지역자원시스템공학과) ;
  • 김영기 (한경대학교 화학공학과) ;
  • 박성직 (한경대학교 지역자원시스템공학과)
  • Received : 2017.01.19
  • Accepted : 2017.02.10
  • Published : 2017.02.28

Abstract

We investigated the efficiency of natural zeolite with different cation exchange capacity (CEC) as capping material for the remediation of marine sediments contaminated with heavy metals. Three different zeolite with high CEC (HCzeo, 163.74 cmolc/kg), medium CEC (MCzeo, 127.20 cmolc/kg), and low CEC (LCzeo, 70.62 cmolc/kg) were used. The surface area of the zeolite was in decreasing order: HCzeo ($59.43m^2/g$) > MCzeo ($52.10m^2/g$) > LCzeo ($10.12m^2/g$). The results of mineralogical composition obtained from X-ray diffraction (XRD) show that LCzeo was mainly composed of quartz and albite. In the XRD result of MCzeo and HCzeo, the peaks of clinoptilolite, heulandite, and mordenite were also observed along with that of quartz and albite. Sorption equilibrium onto the HCzeo, MCzeo, and LCzeo was reached in 6 h at initial concentration of 10 mg/L and 100 mg/L. Higher adsorption of Cd and Zn onto the zeolite with higher CEC were achieved but adsorption of Cu and Ni were not dependent on the CEC of zeolite. It can be concluded that the zeolite with high cation exchange ability is recommended for the contaminated sediments with Cd and Zn but the inexpensive zeolite with low CEC for Cu and Ni.

본 연구에서는 오염퇴적물의 원위치 피복을 위한 소재의 적용성 평가를 위해 양이온교환용량이 다른 제올라이트의 중금속 흡착특성을 평가하였다. 실험을 위해 양이온교환용량이 높은 제올라이트(HCzeo, 163.74 cmol/kg), 중간 값의 양이온교환용량의 제올라이트(MCzeo, 127.20 cmol/kg), 양이온교환용량이 낮은 제올라이트(LCzeo, 70.62 cmol/kg)를 사용하였다. 비표면적을 측정한 결과 HCzeo ($59.43m^2/g$) > MCzeo ($52.10m^2/g$) > LCzeo ($10.12m^2/g$)순으로 높은 결과를 나타내었다. 광물학적 조성 분석을 위해 XRD 측정결과 LCzeo는 quartz와 albite로 구성되었고 MCzeo와 HCzeo의 구성광물은 quartz, albite와 더불어 clinoptilolite, heulandite, mordenite도 측정되었다. HCzeo, MCzeo, LCzeo를 이용한 Cd, Cu, Ni, Zn의 동역학적 흡착실험 결과 실험 6시간대에 흡착 평형에 도달하였다. 평형흡착실험 결과 Cd과 Zn의 흡착은 제올라이트의 양이온교환용량에 따라 증가하였지만 Cu와 Ni의 흡착은 양이온교환용량에 따라 증가하는 경향을 보이지 않았다. 이에 따라 오염퇴적물의 원위치 피복적용에 있어 Cd과 Zn으로 오염된 지역은 양이온교환용량이 높은 제올라이트의 피복적용이 효과적이지만 Cu와 Ni로 오염된 지역의 경우 가격이 저렴한 양이온교환용량이 낮은 제올라이트를 적용하여도 무방할 것으로 판단된다.

Keywords

References

  1. Kim, K. R., Choi, K, Y., Kim, S. H. and Hong, K. H., "Feasibility of present soil remediation technologies in KOREA for the control of contaminated marine sediment: Heavy metals," J. Korean Soc. Environ. Eng., 32(12), 1076-1086 (2010).
  2. Oceans and Fisheries, "Development of sustainable remediation technology of contaminated marine sediments: capping and in-Situ treatment technology,"(2016).
  3. Kim, D. H. and Um, H. H., "Estimation of the sediment pollution in coast of Gwangyang, Mokpo and Shinan, Korea," J. Korean Soc. Mar. Environ. Saf., 19(4), 303-308(2013). https://doi.org/10.7837/kosomes.2013.19.4.303
  4. Song, Y. C., Subha, B. and Woo, J. H., "Release of heavy metals into water from the resuspension of coastal sediment," J. Korean Soc. Environ. Eng., 36(7), 469-475(2014). https://doi.org/10.4491/KSEE.2014.36.7.469
  5. Kwon, Y. T., "Evaluation of heavy metal pollution in the dumping site of the dredged sediment, Masan Bay," Korean Soc. Mar. Environ. Eng., 7(2), 75-81(2004).
  6. Kim, K. R., Kim, S. H. and Hong, G. H., "Remediation technologies for contaminated marine sediments," J. KEDS, 2(1), 20-25(2012).
  7. Woo, J. H., "Treatment problem and remediation technologies of contaminated marine sediment," Rural Resour., 53(4), 14-21(2011).
  8. Park, K. S., "Capping remediation using steel slag for the treatment of contaminated bottom sediment," Rural Resour., 53, 22-33(2011).
  9. Lee, J. K., "Analysis of fact in-situ treatment technologies for contaminated marine sediment," Rural Resour., 53, 34- 38(2011).
  10. U. S. EPA, "Assessment and remediation of contaminated sediments (ARCS)," Program Remediation Guidance, (1994).
  11. Constants, W. D., Reible, D. D. and Bates, J. L., "Field Demonstration of Active Caps: Innovative Capping and In- Situ Treatment Technologies, Project Status Report April 2004 to March 2005," Hazardous Substance Research Center South/Southwest, Louisiana State University(2005).
  12. Kleineidam, S., Schuth, C. and Grathwohl, P., "Solubilitynormalized combined adsorptionpartitioning sorption isotherms for organic pollutants," Environ. Sci. Technol., 36, 4689- 4697(2002). https://doi.org/10.1021/es010293b
  13. Jonker, M. T. O. and Koelmans, A. A., "Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: mechanistic considerations," Environ. Sci. Technol., 36, 3725- 3734(2002). https://doi.org/10.1021/es020019x
  14. Mcleod, P., van den Huevel-Greve, M., Allen-king, R., Luoma, S. and Luthy, R., "Effects of particulate carbonaceous matter on the bioavailability of benzo[a]pyrene and 2,2,5,5- tetrachlorobiphenyl to the clam, Macroma balthica," Environ. Sci. Technol., 38, 4549-4556(2004). https://doi.org/10.1021/es049893b
  15. Korea Ministry of Oceans and Fisheries, "Manual for design and construction of capping technology,"(2016).
  16. Kang, K., Gu, B. W., Kim, Y. K. and Park, S. J., "Removal of $Cu^{2+}$, $Cd^{2+}$ from water using thermally treated lime stone," J. Water Treat., 24(3), 85-94(2016).
  17. Ho, Y. S. and McKay, G., "The sorption of lead(II) ions on peat," Water Res., 33, 578-584(1999). https://doi.org/10.1016/S0043-1354(98)00207-3
  18. Ho, Y. S. and McKay, G., "Pseudo-second order model for sorption Processes," Proc. Biochem., 34(5), 451-465(1999). https://doi.org/10.1016/S0032-9592(98)00112-5
  19. Motsi, T., Rowson, N. A. and Simmons, M. J. H., "Adsorption of heavy metals from acid mine drainage by natural zeolite," Int. J. Miner Proc., 92, 42-48(2009). https://doi.org/10.1016/j.minpro.2009.02.005
  20. Castaldi, P., Santona, L., Enzo, S. and Melis, P., "Sorption processes and XRD analysis of a natural zeolite exchanged with $Pb(^{2+})$, $Cd(^{2+})$ and $Zn(^{2+})$ cations," J. Hazard. Mater., 156(1-3), 428-434(2008). https://doi.org/10.1016/j.jhazmat.2007.12.040
  21. Sprynskyy, M., Lebedynets, M., Terzyk, A. P., Kowalczyk, P., Namiesnik, J. and Buszewski, B., "Ammonium sorption from aqueous solutions by the natural zeolite Transcarpathian clinoptilolite studied under dynamic conditions," J. Colloid Interf. Sci., 248(2), 408-415(2005).
  22. Ghiaci, M., Kia, R., Abbaspur, A. and Seyedeyn-Azad, F., "Adsorption of chromate by surfactant-modified zeolites and MCM-41 molecular sieve," Sep. Purif. Technol., 40, 285-295(2004). https://doi.org/10.1016/j.seppur.2004.03.009
  23. Du, Q., Liu, S., Cao, Z. and Wang, Y., "Ammonia removal from aqueous solution using natural chinese clinoptilolite," Sep. Purif. Technol., 44(3), 229-234(2005). https://doi.org/10.1016/j.seppur.2004.04.011
  24. Farkasa, A., Rozicb, M. and Barbaric-Mikocevicb, Z., "Ammonium exchange in leakage waters of waste dumps using natural zeolite from the Krapina region, Croatia," J. Hazard. Mater., 117(1), 25-33(2005). https://doi.org/10.1016/j.jhazmat.2004.05.035
  25. Wang, S. and Zhu, Z. H., "Characterisation and environmental application of an Australian natural zeolite for basic dye removal from aqueous solution," J. Hazard. Mater., 136(3), 946-952(2006). https://doi.org/10.1016/j.jhazmat.2006.01.038
  26. Noh, J. H., "Study of utilization of natural zeolites as functional materials for water purification (II): adsorption properties of heavy metal ions by domestic zeolites," J. Miner Soc. Korea, 16(3), 201-213(2003).
  27. American Water Works Association, "Water Quality and Treatment Hand Book," McGraw-Hill(1999).
  28. Sprynskyy, M., Buszewski, B., Terzyk, A. P. and Namiesnik, J., "Study of the selection mechanism of heavy metal ($Pb^{2+}$, $Cu^{2+}$, $Ni^{2+}$, and $Cd^{2+}$) adsorption on clinoptilolite," J. Colloid Interf. Sci., 304, 21-28(2006). https://doi.org/10.1016/j.jcis.2006.07.068