DOI QR코드

DOI QR Code

Evaluating the Applicability of the DNDC Model for Estimation of CO2 Emissions from the Paddy Field in Korea

전국 논 토양 이산화탄소 배출량 추정을 위한 DNDC 모형의 국내 적용성 평가

  • Hwang, Wonjae (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Kim, Yong-Seong (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Min, Hyungi (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Kim, Jeong-Gyu (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Cho, Kijong (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University) ;
  • Hyun, Seunghun (Department of Environmental Science and Ecological Engineering, Graduate School, Korea University)
  • 황원재 (고려대학교 환경생태공학과) ;
  • 김용성 (고려대학교 환경생태공학과) ;
  • 민현기 (고려대학교 환경생태공학과) ;
  • 김정규 (고려대학교 환경생태공학과) ;
  • 조기종 (고려대학교 환경생태공학과) ;
  • 현승훈 (고려대학교 환경생태공학과)
  • Received : 2017.02.13
  • Accepted : 2017.03.09
  • Published : 2017.03.31

Abstract

Greenhouse gas emission from agricultural land is recognized as an important factor influencing climatic change. In this study, the national $CO_2$ emission was estimated for paddy soils, using soil GHG emission model (DNDC) with $1km^2$ scale. To evaluate the applicability of the model in Korea, verification was carried out based on field measurement data using a closed chamber. The total national $CO_2$ emission in 2015 was estimated at $5,314kt\;CO_2-eq$, with the emission per unit area ranging from $2.2{\sim}10.0t\;CO_2-eq\;ha^{-1}$. Geographically, the emission of Jeju province was particularly high, and the emission from the southern region was generally high. The result of the model verification analysis with the field data collected in this study (n=16) indicates that the relation between the field measurement and the model prediction was statistically similar (RMSE=22.2, ME=0.28, and $r^2=0.53$). More field measurements under various climate conditions, and subsequent model verification with extended data sets, are further required.

본 연구는 대한민국 전역을 대상으로 국외에서 개발된 토양 온실가스 배출 모형인 DNDC 모형을 적용하여 논 토양에서 배출되는 $CO_2$를 추정하였다. 모형의 국내 적용성 평가를 위해서 2015년부터 2016년 경기도 지역 논 토양을 대상으로 폐쇄형 챔버를 이용해 $CO_2$ 배출량을 실측하고, 모형으로부터 산출된 추정값과 비교했다. DNDC 모형 검증결과 추정값과 관측값의 RMSE, ME, $r^2$이 각각 22.2, 0.28, 0.53으로 통계적으로 신뢰할 수 있었다. 전국 $CO_2$ 배출량 예측 결과, 연간 총 배출량은 $5,314kt\;CO_2-eq$이며 이는 전국 $CH_4$ 총 배출량의 77% 수준이었다. 행정구역별로는 전라도가 가장 많은 배출량을 보였으며, 논의 면적이 많을수록 총 배출량이 높았다. 국토의 단위면적당 $CO_2$ 배출량은 $2.2{\sim}10.0t\;CO_2-eq\;ha^{-1}year^{-1}$ 범위에 있었으며, 평균값은 $4.3t\;CO_2-eq\;ha^{-1}year^{-1}$ 이었다. 지역적으로는 한반도 중부지역 보다 남부지역에서 단위면적당 배출량이 더 높게 나타났다. 본 연구를 통해서, DNDC 모형은 국내 논 토양에서 배출되는 $CO_2$ 발생량을 유의하게 모의한 것으로 나타났다. 보다 더 정교한 온실가스 예측을 위해서는 기후특성, 토양특성, 작물경작특성 및 작물생육 특성을 고려하여 예측하는 것이 중요하며, DNDC 모형의 신뢰도를 높이려면 국내 농업생태계의 환경 및 생물인자를 모의할 수 있는 세부모형을 개발하는 것이 필요하다.

Keywords

References

  1. Abdalla M, S Kumar, M Jones, J Burke and M Williams. 2011. Testing DNDC model for simulating soil respiration and assessing the effects of climate change on the $CO_2$ gas flux from Irish agriculture. Glob. Planet. Change 78:106-115. https://doi.org/10.1016/j.gloplacha.2011.05.011
  2. Anand SV. 2013. Global environmental issues. Sci. Rep. doi: 10.4172/scientificreports.632.
  3. Berntsen J, BM Petersen and JE Olesen. 2006. Simulating trends in crop yield and soil carbon in a long-term experiment effects of rising $CO_2$, N deposition and improved cultivation. Plant soil 287:235-245. https://doi.org/10.1007/s11104-006-9070-y
  4. Cai Z, Y Shan and H Xu. 2007. Effects of nitrogen fertilization on $CH_4$ emissions from rice fields. Soil Sci. Plant Nutr. 53: 353-361. https://doi.org/10.1111/j.1747-0765.2007.00153.x
  5. Chun JA, KM Shim, SH Min and Q Wang. 2016. Methane mitigation for flooded rice paddy systems in South Korea using a process-based model. Paddy Water Environ. 14:123-129. https://doi.org/10.1007/s10333-015-0484-0
  6. Clayton H, JRM Arah and KA Smith. 1994. Measurement of nitrous oxide emissions from fertilized grassland using closed chambers. J. Geophy. Res. 99:16599-16607. https://doi.org/10.1029/94JD00218
  7. Davidson EA and IA Janssens. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165-173. https://doi.org/10.1038/nature04514
  8. Drewer J, M Anderson, PE Levy, B Scholtes, C Helfter, J Parker, RM Rees and UM Skiba. 2016. The impact of ploughing intensively managed temperate grasslands on $N_2O$, $CH_4$ and $CO_2$ fluxes. Plant Soil 409:1-16. https://doi.org/10.1007/s11104-016-3090-z
  9. Engel T and E Priesack. 1993. Expert-N, a building block system of nitrogen models as resource for advice, research, water management and policy. pp. 503-507. In Integrated Soil and Sediment Research: a Basis for Proper Protection (Eijsackers HJP and T Hamers eds.). Kluwer Academic Publishers. Dordrecht.
  10. Fumoto T, K Kobayashi, C Li, K Yagi and T Hasegawa. 2010. Revising a process-based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes. Global Change Biol. 14:382-402.
  11. Gershenson A, NE Bader and WX Cheng. 2009. Effects of substrate availability on the temperature sensitivity of soil organic matter decomposition. Glob. Chang. Biol. 15:176-183. https://doi.org/10.1111/j.1365-2486.2008.01827.x
  12. GIR (Greenhouse Gas Inventory and Research Center). 2015. National greenhouse gas inventory report of Korea.
  13. Huang S, Y Sun, X Yu and W Zhang. 2016. Interactive effects of temperature and moisture on $CO_2$ and $CH_4$ production in a paddy soil under long-term different fertilization regimes. Biol. Fertil. Soils 52:285-294. https://doi.org/10.1007/s00374-015-1075-3
  14. Hwang W, M Park, YS Kim, K Cho, WK Lee and S Hyun. 2015. Analysis of greenhouse gas emission models and evaluation of their application on agricultural lands in Korea. Ecol. Resil. Infrastruct. 2:185-190. https://doi.org/10.17820/eri.2015.2.2.185
  15. IPCC. 2013. Working group I contribution to the IPCC fifth assessment report climate change 2013: The physical science basis. http://www.climatechange2013.org/report/. Accessed 3. Feb. 2017.
  16. Jansson PE and DS Moon. 2001. A coupled model of water, heat and mass transfer using object-orientation to improve flexibility and functionality. Environ. Model. Softw. 16:37-46. https://doi.org/10.1016/S1364-8152(00)00062-1
  17. Katayanagi N, T Fumoto, M Hayano, Y Takata, T Kuwagata, Y Shirato, S Sawano, M Kajiura, S Sudo, Y Ishigooka and K Yagi. 2016. Development of a method for estimating total $CH_4$ emission from rice paddies in Japan using the DNDCRice model. Sci. Total Environ. 547:429-440. https://doi.org/10.1016/j.scitotenv.2015.12.149
  18. Kim SY, J Gutierrez and PJ Kim. 2016. Unexpected stimulation of $CH_4$ emissions under continuous no-tillage system in mono-rice paddy soils during cultivation. Geoderma 267: 34-40. https://doi.org/10.1016/j.geoderma.2015.12.021
  19. Ku HH, K Hayashi, R Agbisit and G Villegas-Pangga. 2016. Effect of rates and sources of nitrogen on rice yield, nitrogen efficiency, and methane emission from irrigated rice cultivation. Arch. Agron. Soil Sci. DOI:10.1080/03650340.2016.1255327.
  20. Li C, S Frolking and TA Frolking. 1992. A model of nitrous oxide evolution from soil driven by rainfall events: I. model structure and sensitivity. J. Geophys. Res. 97:9759-9776. https://doi.org/10.1029/92JD00509
  21. Li C, J Cui, G Sun and C Trettin. 2004. Modeling impacts of management on carbon sequestration and trace gas emissions in forested wetland ecosystems. Environ. Manage. 33: S176-S186.
  22. Li H, J Qiu, L Wang, H Tang, C Li and E Van Ranst. 2010. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat-maize rotation system in China. Agric. Ecosyst. Environ. 135:24-33. https://doi.org/10.1016/j.agee.2009.08.003
  23. Moriasi DN, JG Arnold, MW Van Liew, RL Bingner, RD Harmel and TL Veith. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. 50:885-900. https://doi.org/10.13031/2013.23153
  24. Mu ZJ, AY Huang, JP Ni, JQ Li, YY Liu, S Shi, DT Xie and R Hatano. 2013. Soil greenhouse gas fluxes and net global warming potential from intensively cultivated vegetable fields in southwestern China. J. Soil Sci. Plant Nutr. 13: 566-578.
  25. NIAST (National institute of Agricultural Science and Technology). 2000. Methods of analysis of soil and plant. NIAST. Suwon.
  26. Parton WJ, AR Mosier, DS Ojima, DW Valentine, DS Schimel, K Weier and AE Kulmala. 1996. Generalized model for $N_2$ and $N_2O$ production from nitrification and denitrification. Global Biogeochem. Cycles 10:401-412. https://doi.org/10.1029/96GB01455
  27. Pathak H, C Li and R Wassmann. 2005. Greenhouse gas emissions from Indian rice fields: calibration and upscaling using the DNDC model. Biogeosciences 2:113-123. https://doi.org/10.5194/bg-2-113-2005
  28. Rai B and AK Srivastava. 1981. Studies on microbial population of a tropical dry deciduous forest soil in relation to soil respiration. Pedobiol. 22:185-190.
  29. Raich JW and A Tufekcioglu. 2000. Vegetation and soil respiration: correlations and controls. Biogeochemistry 48:71-90. https://doi.org/10.1023/A:1006112000616
  30. Reidsma P, F Ewert, H Boogaard and K van Diepen. 2009. Regional crop modelling in Europe: The impact of climatic conditions and farm characteristics on maize yields. Agric. Syst. 100:51-60. https://doi.org/10.1016/j.agsy.2008.12.009
  31. Schimel J. 2000. Global change: rice, microbes and methane. Nature 403:375-377.
  32. Tonitto C, MB David, LE Drinkwater and C Li. 2007. Application of DNDC model to tile-drained Illinois agroecosystems: model calibration, validation, and uncertainty analysis. Nutr. Cycl. Agroecosys. 78:51-63. https://doi.org/10.1007/s10705-006-9076-0
  33. U.S. Department of State. 2010. U.S. Climate Action Report. Washington DC, USA.