DOI QR코드

DOI QR Code

Numerical Simulation of Flow Characteristics and Channel Changes with Discharge in the Sharped Meandering Channel in the Naeseongcheon, Korea

내성천 급만곡부에서 유량 변화에 의한 흐름 및 하도변화 수치모의

  • Jang, Chang-Lae (Department of Civil Engineering, Korea National University of Transportation)
  • 장창래 (한국교통대학교 토목공학과)
  • Received : 2017.03.09
  • Accepted : 2017.03.30
  • Published : 2017.03.31

Abstract

This study investigates the flow characteristics and bed changes with discharge using a two-dimensional numerical model, Nays2DH. The water depth at the outer part of curved channel is formed deeper from the narrow part after passing through the curved part. The point bar is developed in the wide section and water depth is shallow in the inside of the curved section. The flow is concentrated in the outer pater of the meandering section, which leads to the deep water. In the downstream section where the straight line formed, the flow is concentrated at the center of the bed. Alternating deep water and shallow places are generated due to the continuous formation of meandering. These characteristics are formed by the influence of strong two-stream flow in meandering stream. The dimensionless tractive force is also large in the region where the flow velocity is concentrated. However, in the narrow and sharp meandering river reaches, the pattern of bed changes and the spatial distribution patterns of flow velocity and dimensionless tractive force are inconsistent in the narrow and sharp meandered reaches due to the strong secondary flow.

본 연구에서 내성천 만곡부에서 유량의 변화에 의한 흐름 및 하도 변화를 2차원 수치모형인 Nays2DH를 이용하여 분석하였다. 만곡부를 통과 된 후에 하폭이 좁은 구간에서 만곡부 외측으로 수심이 깊게 형성되었다. 하폭이 넓은 구간에서는 점사주가 형성된 만곡부 내측에서는 수심이 얕게 형성되었다. 흐름이 집중되는 만곡부 외측에서는 수심이 깊게 형성되었다. 직선이 형성된 하류 구간에서 흐름은 하도 중앙에 집중되었다. 연속적으로 사행이 형성되면서 번갈아 가며 수심이 깊은 곳과 얕은 곳이 형성되었다. 이러한 특성은 사행하천에서 강한 2차류의 영향을 받아 형성된 것이다. 무차원소류력도 유속이 집중된 부분에 크게 나타났다. 그러나 하폭이 감소하고 급만곡부가 형성된 곳에서는 유속과 무차원소류력의 변화에 대한 하상고 변화가 일치되지 않았다.

Keywords

References

  1. Ashida, K. and Michiue, M. 1972. Study on hydraulic resistance and bedload transport rate in alluvial streams. Proceedings of the Japan Society of Civil Engineers 206: 59-69.
  2. Blanckaert, K. 2011. Hydrodynamic processes in sharp meander bends and their morphological implications. Journal of Geophysical Research: Earth Surface 116(F1), doi:10.1029/2010F001806.
  3. Cui, Y., Parker, G., Lisle, T.E., Gott, J., Hansler-Ball, M.E., Pizzuto, J.E., Allmendinger, N. and Reed, J.M. 2003. Sediment pulses in mountain rivers: 1. Experiments. Water Resources Research 39: 1239, doi:10.1029/2002WR001803.
  4. Engel, F.L. and Rhoads, B.L. 2016. Three-dimensional flow structure and patterns of bed shear stress in an evolving compound meander bend. Earth Surface Processes and Landforms 41: 1211-1226. https://doi.org/10.1002/esp.3895
  5. Hickin, E.H. 1978. Mena flow-structure in meanders of the Squamish River, British Columbia. Canadian Journal of Earth Sciences 15(11): 1833-1849. https://doi.org/10.1139/e78-191
  6. Iwasaki, T., Shimizu, Y. and Kimura, I. 2016. Numerical simulation of bar and bank erosion in a vegetated floodplain: A case study in the Otofuke River. Advances in Water Resources. http://dx.doi.org/10.1016/j.advwatres.2015.02.001.
  7. Jang, C.-L. and Shimizu, Y. 2005. Numerical simulation of relatively wide, shallow channels with erodible banks. Journal of Hydraulic Engineering 131(7): 565-575. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:7(565)
  8. Jang, C.-L. and Shimizu, Y. 2007. Vegetation effects on the morphological behavior of alluvial channels. Journal of Hydraulic Research 45(6): 763-772. https://doi.org/10.1080/00221686.2007.9521814
  9. Kang, K.-H., Jang, C.-L., Lee, G.-H. and Jung, K. 2016. Numerical analysis of the morphological changes by sediment supply at the downstream channel of Youngju dam. Journal of Korea Water Resources Association 49(8): 693-705. (in Korean) https://doi.org/10.3741/JKWRA.2016.49.8.693
  10. Lee, K. S. and Jang, C.-L. 2016. Numerical investigation of space effects of serial spur dikes on flow and bed changes by using Nays2D. Journal of Korea Water Resources Association 49(3): 73-81. (in Korean) https://doi.org/10.3741/JKWRA.2016.49.1.73
  11. Nanson, R.A. 2010. Flow fields in tightly curving meander bends of low width-depth ratio. Earth Surface Processes and Landforms 35(2): 119-135. https://doi.org/10.1002/esp.1878
  12. Schuurm, F., Shimizu, Y., Iwasaki, T. and Kleinhans, M.G. 2016. Dynamic meandering in response to upstream perturbations and floodplain formation. Geomorphology 253: 94-109. https://doi.org/10.1016/j.geomorph.2015.05.039

Cited by

  1. 모래하천의 관리를 위한 생태 모니터링 vol.4, pp.1, 2017, https://doi.org/10.17820/eri.2017.4.1.001
  2. 금강유역 대형댐 하류 하도지형 경년변화 및 하상재료 종적변이 연구 vol.6, pp.4, 2017, https://doi.org/10.17820/eri.2019.6.4.287
  3. 합류부에서 하상변동 수치모의 연구: 미호천 및 감천 합류부를 대상으로 vol.6, pp.4, 2019, https://doi.org/10.17820/eri.2019.6.4.328
  4. Effect of climate change on long-term river geometric variation in Andong Dam watershed, Korea vol.12, pp.3, 2021, https://doi.org/10.2166/wcc.2020.148