DOI QR코드

DOI QR Code

Characteristics of Fish Community Structure before the Dam Operation in the Naeseong Stream, Korea

내성천에서 영주댐 운영전 어류 군집구조의 특성

  • Received : 2017.03.27
  • Accepted : 2017.03.30
  • Published : 2017.03.31

Abstract

The Naeseong Stream as a tributary of Nakdong River has conserved the unique structure and function of a typical sand-bed stream ecosystem. However, it is expected to change the stream bed environments and then the fish fauna in the downstream of the dam after the operation of the Yeongju Dam from 2016. We collected fishes and investigated their habitat environments from 2014 to 2016 in the downstream of the Yeongju Dam under construction in order to monitor changes in habitat environment, fauna and community structure of fishes in the Naeseong Stream. The size of the bed materials increased immediately downstream of the Yeongju Dam under construction. Before the operation of the Yeongju Dam, Zacco platypus was dominated and Opsarichthys uncirostris amurensis, Coreoleuciscus splendidus, Hemibarbus longirostris and Pseudogobio esocinus were sub-dominated according to the different sampling sites. Hemibarbus labeo, H. longirostris, Pseudogobio esocinus, Gobiobotia nakdongensis, Cobitis hankugensis and Leiocassis ussuriensis were found as a psammophilous fish specific to sand stream in the Naeseong Stream. At the downstream of the dam, the fish community was classified into a group of gravel-bed fishes such as Microphysogobio yaluensis, Coreoleuciscus splendidus and Coreoperca herzi and a group of sand-bed fishes such as Hemibarbus labeo, Cobitis hankugensis and Gobiobotia nakdongensis. These fish communities gradually tended to change from sand-bed fish community to gravel-bed fish community during the construction of the Yeongju Dam. Therefore, it is necessary to collect the baseline data for the stream ecosystem conservation in the sandy stream by continuously monitoring changes in the environment and fish in the downstream of the Youngju Dam.

낙동강의 지류하천인 내성천은 전형적인 모래하천으로 고유한 생태계의 구조와 기능을 가지고 있다. 그러나 2016년부터 운영되고 있는 영주댐에 의하여 내성천의 댐 하류에서 하상의 변화와 이에 따른 어류상의 변화가 예상된다. 본 연구에서는 2014년부터 2016년까지 모래하천인 내성천에서 어류의 서식환경, 생물상 및 군집구조의 변화를 모니터링하기 위하여, 공사중인 영주댐 하류와 대조지소로서 서천에서 하천 환경을 조사하고 어류를 채집하였다. 내성천에 영주댐이 축조되기 시작하면서 댐 직하류에서 하상 재료의 입경 크기가 증가하였다. 영주댐이 운영되기 전 내성천에서는 피라미가 우점하였고, 조사지점에 따라서 끄리, 쉬리, 참마자, 모래무지가 아우점하였다. 내성천에서는 모래 하상에서 특이하게 서식하는 누치, 참마자, 모래무지, 흰수마자, 기름종개, 대동갱이가 발견되었다. 내성천의 영주댐 하류에서 어류 군집는 하상 재료의 입경에 따라서 돌마자, 쉬리, 꺽지 등의 자갈 하상 어종 출현 군집과 누치, 기름종개, 흰수마자 등의 모래 하상 어종 출현 군집으로 구분되었다. 또한 이들 군집은 영주댐 건설 이후에 시간이 경과함에 따라서 점차 모래 하상 어류 군집에서 자갈 하상 어류 군집으로 변하는 경향이었다. 그러므로 영주댐 하류 하천에서 환경과 어류상의 변화를 지속적으로 모니터링하여 모래하천의 생태계 보전을 위한 기초자료를 확보하여야 할 것으로 생각된다.

Keywords

References

  1. Barbour, M.T., Gerritsen, J., Snyder, B.D. and Stribling, J.B. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers. U.S. Environmental Protection Agency, Washington, D.C., USA.
  2. Bednarek, A.T. 2001. Undamming rivers: a review of the ecological impacts of dam removal. Environmental Management 27(6): 803-814. https://doi.org/10.1007/s002670010189
  3. Bray, J.R. and Curtis, J.T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27(4): 325-349. https://doi.org/10.2307/1942268
  4. Cummins, K.W. 1962. An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. The American Midland Naturalist 67(2): 477-504. https://doi.org/10.2307/2422722
  5. Kang, G.H. and Lee, W.S. 2015. Introduction of Yeongju Multipurpose Dam construction project. Water for Future 48(3): 63-70. (in Korean)
  6. Kang, Y.H., Kim, S.K., Hong, G.-B and Kim, H.-S. 2011. Change of fish fauna and community structure in the Naeseong Stream around the planned Yeongju Dam. Korean Journal of Limnology 44(2): 226-238. (in Korean)
  7. Kim, I.S and Park, J.Y. 2002. Freshwater Fishes of Korea. Kyohaksa, Seoul, Korea. (in Korean)
  8. Kim, I.S, Choi, Y., Lee, C.R., Lee, Y.J., Kim, B.J. and Kim, J.H. 2005. Illustrated Book of Korean Fishes. Kyohaksa, Seoul, Korea. (in Korean)
  9. Kim, S.K. and Choi, S.U. 2015. Simulation of change in physical habitat of fish using the mobile bed model in a downstream river of dam. Ecology and Resilient Infrastructure 2(4): 317-323. (in Korean) https://doi.org/10.17820/eri.2015.2.4.317
  10. Lazorchak, J.M., Klemm, D.J. and Peck D.V. 1998. Environmental Monitoring and Assessment Program-Surface Waters: Field Operations and Methods for Measuring the Ecological Condition of Wadeable Streams. U.S. Environmental Protection Agency, Washington, D.C., USA.
  11. Lee, C.J., Chung, S.J. and Hwang, S.Y. 2013. Study on the monitoring of the changes in landform and riparian vegetation of sand-bed stream before the dam construction: in the case of Naesung Stream before the dam construction. 46(5): 120-127. (in Korean)
  12. Lee, C.J., Kim, J.S., Kim, K.H. and Shin, H.S. 2015. Analysis on fluvial geomorphological characteristics based on past and present data for river restoration: an application to the Miho River and the Naesung River. Journal of Korea Water Resources Association 48(3): 169-183. (in Korean) https://doi.org/10.3741/JKWRA.2015.48.3.169
  13. Lee, G.R., Cho, Y.D., Kim, D.S., Kim, J.S., Jeong, W.H., Cho, H.J. and Yun, K.H. 2010. A study on geomorphic environments and sediments of channels at Naeseongcheon River in Gyeongpook Province. Journal of the Korean Association of Regional Geographers 16(2): 85-99. (in Korean)
  14. Na, J.Y., Choi, B.S., Hwang, S.C. and Yang, H. 2015. Augmentation and monitoring of an endangered fish, Gobiobotia naktongensis in Naeseongcheon Stream, Korea. Ecology and Resilient Infrastructure 2(3): 216-223. (in Korean) https://doi.org/10.17820/eri.2015.2.3.216
  15. Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H. and Wagner, H. 2015. Package 'vegan', Community Ecology Package. http://vegan.r-forge.r-project.org. Assessed 1 August 2015.
  16. Pielou, C.E. 1975. Ecology Diversity. Wiley, New York, USA.
  17. R Development Core Team. 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Assessed 1 March 2015.
  18. Shannon, C.E. 1948. A mathematical theory of communication. The Bell System Technical Journal 27: 379-423 and 623-656. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  19. Yang, H.J. and Kwon, O.T. 1992. On the ichthyofauna and ecological survey of freshwater fishes in the Naesong River. Journal of Environmental Sciences (Kyungbook National University) 6(1): 15-29. (in Korean)
  20. Yoon, S.J., Choi, J.K. and Lee, H.G. 2014. Comparison of fish distribution characteristics by substrate structure in the 4 streams. Korean Journal of Environment and Ecology 28(3): 302-313. (in Korean) https://doi.org/10.13047/KJEE.2014.28.3.302
  21. Zuanon, J., Bockmann, F.A. and Sazima, I. 2006. A remarkable sand-dwelling fish assemblage from central Amazonia, with comments on the evolution of psammophily in South American freshwater fishes. Neotropical Ichthyology 4(1): 107-118. https://doi.org/10.1590/S1679-62252006000100012

Cited by

  1. 모래하천의 관리를 위한 생태 모니터링 vol.4, pp.1, 2017, https://doi.org/10.17820/eri.2017.4.1.001
  2. 영주댐 담수 이후 저서성 대형무척추동물 군집변화 vol.33, pp.5, 2017, https://doi.org/10.13047/kjee.2019.33.5.515
  3. Genetic diversity and population structure of the endangered fish Pseudobagrus brevicorpus (Bagridae) using a newly developed 12-microsatellite marker vol.42, pp.11, 2020, https://doi.org/10.1007/s13258-020-00992-y