DOI QR코드

DOI QR Code

Bioconversion Using Lactic Acid Bacteria: Ginsenosides, GABA, and Phenolic Compounds

  • Lee, Na-Kyoung (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Paik, Hyun-Dong (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
  • Received : 2016.12.14
  • Accepted : 2017.03.15
  • Published : 2017.05.28

Abstract

Lactic acid bacteria (LAB) are used as fermentation starters in vegetable and dairy products and influence the pH and flavors of foods. For many centuries, LAB have been used to manufacture fermented foods; therefore, they are generally regarded as safe. LAB produce various substances, such as lactic acid, ${\beta}$-glucosidase, and ${\beta}$-galactosidase, making them useful as fermentation starters. Existing functional substances have been assessed as fermentation substrates for better component bioavailability or other functions. Representative materials that were bioconverted using LAB have been reported and include minor ginsenosides, ${\gamma}$-aminobutyric acid, equol, aglycones, bioactive isoflavones, genistein, and daidzein, among others. Fermentation mainly involves polyphenol and polysaccharide substrates and is conducted using bacterial strains such as Streptococcus thermophilus, Lactobacillus plantarum, and Bifidobacterium sp. In this review, we summarize recent studies of bioconversion using LAB and discuss future directions for this field.

Keywords

References

  1. Fortina MG, Ricci G, Foschino R, Picozzi C, Dolci P, Zeppa G, et al. 2007. Phenotyping, technological properties and safety aspects of Lactococcus garvieae strains from dairy environments. J. Appl. Microbiol. 103: 445-453. https://doi.org/10.1111/j.1365-2672.2006.03265.x
  2. Lee NK, Han KJ, Son SH, Eom SJ, Lee SK, Paik HD. 2015. Multifunctional effect of probiotic Lactococcus lactis KC24 isolated from kimchi. LWT Food Sci. Technol. 64: 1036-1041. https://doi.org/10.1016/j.lwt.2015.07.019
  3. Park SB, Han BK, Oh HJ, Lee SJ, Cha SK, Park YS, Choi HJ. 2012. Bioconversion of green tea extract using lactic acid bacteria. Food Eng. Prog. 16: 26-32.
  4. Gachon CMM, Langlois-Meurinne M, Saindrenan P. 2005. Plant secondary metabolism glycosyltransferases: the emerging functional analysis. Trends Plant Sci. 10: 542-549. https://doi.org/10.1016/j.tplants.2005.09.007
  5. Michlmayr H, Kneifel W. 2014. ${\beta}$-Glucosidase activities of lactic acid bacteria: mechanisms, impact on fermented food and human health. FEMS Microbiol. Lett. 352: 1-10. https://doi.org/10.1111/1574-6968.12348
  6. Rodríguez H, Curiel JA, Landete JM, de las Rivas B, de Felipe FL, Gómez-Cordoves C, et al. 2009. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 132: 79-90. https://doi.org/10.1016/j.ijfoodmicro.2009.03.025
  7. Park MJ, General T, Lee SP. 2012. Physicochemical properties of roasted soybean flour bioconverted by solidstate fermentation using Bacillus subtilis a nd Lactobacillus plantarum. Prev. Nutr. Food Sci. 17: 36-45. https://doi.org/10.3746/pnf.2012.17.1.036
  8. Chen YM, Shin TW, Chiu CP, Pan TM, Tsai TY. 2013. Effects of lactic acid bacteria-fermented soy milk on melanogenesis in B16F0 melanocytes. J. Funct. Foods 5: 395-405. https://doi.org/10.1016/j.jff.2012.11.012
  9. Berthiller F, Krska R, Domig KJ, Kneifel W, Juge N, Schuhmacher R, Adam G. 2011. Hydrolytic fate of deoxynivalenol-3-glucoside during digestion. Toxicol. Lett. 206: 264-267. https://doi.org/10.1016/j.toxlet.2011.08.006
  10. Cairns JRK, Esen A. 2010. ${\beta}$-Glucosidases. Cell. Mol. Life Sci. 67: 3389-3405. https://doi.org/10.1007/s00018-010-0399-2
  11. Veena V, Poornima P, Parvatham R, Sivapriyadharsini Kalaiselvi K. 2011. Isolation and characterization of ${\beta}$- glucosidase producing bacteria from different sources. Afr. J. Biotechnol. 10: 14907-14912.
  12. Spano G, Rinaldi A, Ugliano M, Beneduce L, Massa S. 2005. A ${\beta}$-glucosidase producing gene isolated from wine Lactobacillus plantarum is regulated by abiotic stresses. J. Appl. Microbiol. 98: 855-861. https://doi.org/10.1111/j.1365-2672.2004.02521.x
  13. Grandits M, Michlmayr H, Sygmund C, Oostenbrink C. 2013. Calculation of substrate binding affinities for a bacterial GH78 rhamnosidase through molecular dynamics simulations. J. Mol. Catal. B Enzym. 92: 34-43. https://doi.org/10.1016/j.molcatb.2013.03.012
  14. Jee HS, Chang KH, Park SH, Kim KT, Paik HD. 2014. Morphological characterization, chemical components, and biofunctional activities of Panax ginseng, Panax quinquefolium, and Panax notoginseng roots: a comparative study. Food Rev. Int. 30: 91-111. https://doi.org/10.1080/87559129.2014.883631
  15. Ligor T, Ludwiczuk A, Wolski T, Buszewski B. 2005. Isolation and determination of ginsenosides in American ginseng leaves and root extracts by LC-MS. Anal. Bioanal. Chem. 383: 1098-1105. https://doi.org/10.1007/s00216-005-0120-8
  16. Attele AS, Wu JA, Yuan CS. 1999. Ginseng pharmacology: multiple constituents and multiple actions. Biochem. Pharmacol. 58: 1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
  17. Chang KH, Jee HS, Lee NK, Parik SH, Lee NW, Paik HD. 2009. Optimization of the enzymatic production of 20(S)- ginsenoside Rg3 from white ginseng extract using response surface methodology. New Biotechnol. 26: 181-186. https://doi.org/10.1016/j.nbt.2009.08.011
  18. Yu T, Yang Y, Kwak YS, Song GG, Kim MY, Rhee MH, Cho JY. 2017. Ginsenoside Rc from Panax ginseng exerts antiinflammatory activity by targeting TANK-binding kinase 1/ interferon regulatory factor-3 and p38/ATF-2. J. Ginseng Res. [In Press].
  19. Hou YL, Tsai YH, Lin YH, Chao JCJ. 2014. Ginseng extract and ginsenoside Rb1 attenuate carbon tetrachloride-induced liver fibrosis in rats. BMC Complement. Altern. Med. 14: 415. https://doi.org/10.1186/1472-6882-14-415
  20. Yoo YC, Lee J, Park SR, Nam KY, Cho YH, Choi JE. 2013. Protective effect of ginsenoside-Rb2 from Korean red ginseng on the lethal infection of haemagglutinating virus of Japan in mice. J. Ginseng Res. 37: 80-86. https://doi.org/10.5142/jgr.2013.37.80
  21. Yang JW, Kim SS. 2015. Ginsenoside Rc promotes antiadipogenic activity on 3T3-L1 adipocytes by down-regulating $C/EBP{\alpha}$ and $PPARA{\gamma}$. Molecules 20: 1293-1303. https://doi.org/10.3390/molecules20011293
  22. Wang L, Liu QM, Sung BH, An DS, Lee HG, Kim SG, et al. 2011. Bioconversion of ginsenosides Rb(1), Rb(2), Rc and Rd by novel ${\beta}$-glucosidase hydrolyzing outer 3-O glycoside from Sphingomonas sp. 2F2: cloning, expression, and enzyme characterization. J. Biotechnol. 156: 125-133. https://doi.org/10.1016/j.jbiotec.2011.07.024
  23. Kim HJ, Kim P, Shin CY. 2013. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J. Ginseng Res. 37: 8-29. https://doi.org/10.5142/jgr.2013.37.8
  24. Jovanovski E, Bateman EA, Bhardwaj J, Fairgrieve C, Mucalo I, Jenkins AL, et al. 2014. Effect of Rg3-enriched Korean red ginseng (Panax ginseng) on arterial stiffness and blood pressure in healthy individuals: a randomized controlled trial. J. Am. Soc. Hypertens. 8: 537-541. https://doi.org/10.1016/j.jash.2014.04.004
  25. Li N, Liu Y, Li W, Zhou L, Li Q, Wang X, et al. 2015. A UPLC/MS-based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer's disease. J. Ginseng Res. 40: 9-17.
  26. Jia P, Chen G, Li R, Rong X, Zhou G, Zhong Y. 2013. Ginsenoside retinoblastoma 1 (Rb1) suppresses NO production and inducible nitric oxide synthase (iNOS) expression by inhibiting nuclear factor ${\kappa}B$ (NF-${\kappa}B$) activation in SW1353 chondrosarcoma cells. Afr. J. Pharm. Pharmacol. 7: 2584-2590. https://doi.org/10.5897/AJPP12.138
  27. Park EK, Choo MK, Han MJ, Kim DH. 2004. Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Int. Arch. Allergy Immunol. 133: 113-120. https://doi.org/10.1159/000076383
  28. Kim HS, Lee EH, Ko SR, Choi KJ, Park JH, Im DS. 2004. Effects of ginsenosides Rg3 and Rh2 on the proliferation of prostate cancer cells. Arch. Pharm. Res. 27: 429-435. https://doi.org/10.1007/BF02980085
  29. Park YC, Lee CH, Kang HS, Kim KW, Chung HT, Kim HD. 1996. Ginsenoside-Rh1 and Rh2 inhibit the induction of nitric oxide synthesis in murine peritoneal macrophages. Biochem. Mol. Biol. Int. 40: 751-757.
  30. Lai DM, Tu YK, Liu IM, Chen PF, Cheng JT. 2006. Mediation of beta-endorphin by ginsenoside Rh2 to lower plasma glucose in streptozotocin-induced diabetic rats. Planta Med. 72: 9-13. https://doi.org/10.1055/s-2005-916177
  31. Lee BH, You HJ, Park MS, Kwon B, Ji GE. 2006. Transformation of glycosides from food materials by probiotics and food microorganisms. J. Microbiol. Biotechnol. 16: 497-504.
  32. Bae EA, Park SY, Kim DH. 2000. Constitutive ${\beta}$-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol. Pharm. Bull. 23: 1481-1485. https://doi.org/10.1248/bpb.23.1481
  33. Bae EA, Kim NY, Han MJ, Choo MK, Kim DH. 2003. Transformation of ginsenosides to compound K (IH-901) by lactic acid bacteria. J. Microbiol. Biotechnol. 13: 9-14.
  34. Huq MA, Kim YJ, Min JW, Bae KS, Yang DC. 2014. Use of Lactobacillus rossiae DC05 for bioconversion of the major ginsenosides Rb1 and Re into the pharmacologically active ginsenosides C-K and Rg2. Food Sci. Biotechnol. 23: 1561-1567. https://doi.org/10.1007/s10068-014-0212-3
  35. Quan LH, Plao JY, Min JW, Yang DU, Lee HN, Yang DC. 2011. Bioconversion of ginsenoside Rb1 into compound by Leuconostoc citreum LH1 isolated from kimchi. Braz. J. Microbiol. 42: 1227-1237. https://doi.org/10.1590/S1517-83822011000300049
  36. Hyun YJ. 2012. Cloning and characterization of ginsenoside Ra1-hydrolyszing ${\beta}$-D-xylosidase from Bifidobacterium breve K-110. J. Microbiol. Biotechnol. 22: 535-540. https://doi.org/10.4014/jmb.1110.10001
  37. Lee J, Hyun YJ, Kim DH. 2011. Cloning and characterization of ${\alpha}$-L-arabinofuranosidase and bifunctional ${\alpha}$-L-arabinopyranosidase/ ${\beta}$-D-galactopyranosidase from Bifidobacterium longum H-1. J. Appl. Microbiol. 111: 1097-1107. https://doi.org/10.1111/j.1365-2672.2011.05128.x
  38. Lee SJ, Kim Y, Kim MG. 2015. Changes in the ginsenoside content during the fermentation process using microbial strains. J. Ginseng Res. 39: 392-397. https://doi.org/10.1016/j.jgr.2015.05.005
  39. Jung J, Paik HD, Yoon HJ, Jang HJ, Jeewanthi CRK, Jee HS, et al. 2016. Physicochemical characteristics and antioxidant capacity in yogurt fortified with red ginseng extract. Korean J. Food Sci. Anim. Resour. 36: 412-420. https://doi.org/10.5851/kosfa.2016.36.3.412
  40. Ku S, You HJ, Park MS, Ji GE. 2016. Whole-cell biocatalysis for producing ginsenoside Rd from Rb1 using Lactobacillus rhamnosus GG. J. Microbiol. Biotechnol. 26: 1206-1215. https://doi.org/10.4014/jmb.1601.01002
  41. Liu C, Tung YT, Wu CL, Lee BH, Hsu WH, Pan TM. 2011. Antihypertensive effects of Lactobacillus-fermented milk orally administered to spontaneously hypertensive rats. J. Agric. Food Chem. 59: 4537-4543. https://doi.org/10.1021/jf104985v
  42. Kim JE, Kim JS, Song YC, Lee J, Lee SP. 2014. Novel bioconversion of sodium glutamate to ${\gamma}$-poly-glutamic acid and ${\gamma}$-amino-butyric acid in a mixed fermentation using Bacillus subtilis H A and Lactobacillus plantarum K154. Food Sci. Biotechnol. 23: 1551-1559. https://doi.org/10.1007/s10068-014-0211-4
  43. Ogunleye A, Bhat A, Irorere VU, Hill D, Williams C, Radecka I. 2015. Poly-${\gamma}$-glutamic acid: production, properties and applications. Microbiology 161: 1-17 https://doi.org/10.1099/mic.0.081448-0
  44. Yoshimura M, Toyoshi T, Sano A, Izumi T, Fujii T, Konishi S, et al. 2010. Antihypertensive effect of a gamma-aminobutyric acid rich tomato cultivar 'DG03-9' in spontaneously hypertensive rats. J. Agric. Food Chem. 58: 615-619. https://doi.org/10.1021/jf903008t
  45. Zhao D, Shah NP. 2014. Effect of tea extract on lactic acid bacterial growth, their cell surface characteristics and isoflavone bioconversion during soymilk fermentation. Food Res. Int. 62: 877-885. https://doi.org/10.1016/j.foodres.2014.05.004
  46. Rizzello CG, Cassone A, Di Cagno R, Gobbetti M. 2008. Synthesis of angiotensin I-converting enzyme (ACE)-inhibitory peptides and ${\gamma}$-aminobutyric acid (GABA) during sourdough fermentation by selected lactic acid bacteria. J. Agric. Food Chem. 56: 6936-6943. https://doi.org/10.1021/jf800512u
  47. Sun TS, Zhao SP, Wang HK, Cai CK, Chen YF, Zhang HP. 2009. ACE-inhibitory activity and gamma-aminobutyric acid content of fermented skim milk by Lactobacillus helveticus isolated from Xingjiang koumiss in China. Eur. Food Res. Technol. 228: 607-612. https://doi.org/10.1007/s00217-008-0969-9
  48. Nejati F, Rizzello CG, Di Cagno R, Sheikh-Zeinoddin M, Diviccaro A, Minervini G, et al. 2013. Manufacture of a functional fermented milk enriched of angiotensin-I converting enzyme (ACE)-inhibitory peptides and gamma-amino butyric acid (GABA). LWT-Food Sci. Technol. 51: 183-189. https://doi.org/10.1016/j.lwt.2012.09.017
  49. Zhang Y, Song L, Gao Q, Yu SM, Li L, Gao NF. 2012. The two-step biotransformation of monosodium glutamate to GABA by Lactobacillus brevis growing and resting cells. Appl. Microbiol. Biotechnol. 94: 1619-1627. https://doi.org/10.1007/s00253-012-3868-8
  50. Di Cagno R, Mazzacane F, Rizzello GG, Angelis MD, Gluliani GT, Meloni M, et al. 2010. Synthesis of gammaaminobutyric acid by Lactobacillus plantarum DSM19463: functional grape must beverage and dermatological applications. Appl. Microbiol. Biotechnol. 86: 731-741. https://doi.org/10.1007/s00253-009-2370-4
  51. Wu Q, Shah NP. 2015. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high ${\gamma}$-aminobutyric acid (GABA)-producing lactic acid bacteria. J. Dairy Sci. 98: 790-797. https://doi.org/10.3168/jds.2014-8808
  52. Omar SH. 2010. Oleuropein in olive and its pharmacological effects. Sci. Pharm. 78: 133-154. https://doi.org/10.3797/scipharm.0912-18
  53. Santos MM, Piccirillo C, Castro PLM, Kalogerakis N, Pintado ME. 2012. Bioconversion of oleuropein to hydroxytyrosol by lactic acid bacteria. World J. Microbiol. Biotechnol. 28: 2435-2440. https://doi.org/10.1007/s11274-012-1036-z
  54. Ghabbour N, Lamzira Z, Thonart P, Cidalia P, Markaouid M, Asehraoua A. 2011. Selection of oleuropein-degrading lactic acid bacteria strains isolated from fermenting Moroccan green olives. Grasas Aceites 62: 84-89. https://doi.org/10.3989/gya.055510
  55. Ciafardini G, Marsilio V, Lanza B, Pozzi N. 1994. Hydrolysis of oleuropein by Lactobacillus plantarum strains associated with olive fermentation. Appl. Environ. Microbiol. 60: 4142-4147.
  56. Marsilio V, Lanza B, Pozzi N. 1996. Progress in table olive debittering: degradation in vitro of oleuropein and its derivatives by Lactobacillus plantarum. J. Am. Oil Chem. Soc. 93: 593-597.
  57. Marsilio V, Lanza B. 1998. Characterization of an oleuropein degrading strain of Lactobacillus plantarum. Combined effects of compounds present in olive fermenting brines (phenols, glucose and NaCl) on bacterial activity. J. Sci. Food Agric. 96: 520-524.
  58. Atkinson C, Frankenfeld CL, Lampe JW. 2005. Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp. Biol. Med. 230: 155-170. https://doi.org/10.1177/153537020523000302
  59. Uchiyama S, Ueno T, Suzuki T. 2007. Identification of a newly isolated equol-producing lactic acid bacterium from the human feces. J. Intest. Microbiol. 21: 217-220.
  60. Shimada Y, Yasuda S, Takahashi M, Hayashi T, Miyazawa N, Sato I. 2010. Cloning and expression of a novel NADP (H)- dependent daidzein reductase, an enzyme involved in the metabolism of daidzein, from equol-producing Lactococcus strain 20-92. Appl. Environ. Microbiol. 76: 5892-5901. https://doi.org/10.1128/AEM.01101-10
  61. Tsangalis D, Ashton JF, McGill AEJ, Shah NP. 2002. Enzymic transformation of isoflavone phytoestrogens in soy milk by beta glucosidase producing bacteria. J. Food Sci. 67: 3104-3113. https://doi.org/10.1111/j.1365-2621.2002.tb08866.x
  62. Elghali S, Mustafa S, Amid M, Manap MYA, Ismali A, Abas F. 2012. Bioconversion of daidzein to equol by Bifidobacterium breve 15700 and Bifidobacterium longum BB536. J. Funct. Foods 4: 736-745. https://doi.org/10.1016/j.jff.2012.04.013
  63. Lee M, Hong GE, Zhang H, Yang CY, Han KH, Mandal PK, et al. 2015. Production of the isoflavone aglycone and antioxidant activities in black soymilk using fermentation with Streptococcus thermophilus S10. Food Sci. Biotechnol. 24: 537-544. https://doi.org/10.1007/s10068-015-0070-7
  64. Di Cagno R, Mazzacane F, Rizzello CG, Vincentini O, Silano M, Giuliani G, et al. 2010. Synthesis of isoflavone aglycones and equol in soy milks fermented by food-related lactic acid bacteria and their effect on human intestinal Caco-2 cells. J. Agric. Food Chem. 58: 10338-10346. https://doi.org/10.1021/jf101513r
  65. Ewe JA, Wan-Abdullah WN, Alias AK, Ling MZ. 2012. Effects of ultrasound on growth, bioconversion of isoflavones and probiotic properties of parent and subsequent passages of Lactobacillus fermentum BT 8633 in biotin-supplemented soymilk. Ultrason. Sonochem. 19: 890-900. https://doi.org/10.1016/j.ultsonch.2012.01.003
  66. Rekha CR, Vijayalakshmi G. 2010. Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast. J. Appl. Microbiol. 109: 1198-1208. https://doi.org/10.1111/j.1365-2672.2010.04745.x
  67. Park EH, Kim HS, Eom SJ, Kim KT, Paik HD. 2015. Antioxidative and anticanceric activities of Magnolia (Magnolia denudata) flower petal extract fermented by Pediococcus acidilactici KCCM 11614. Molecules 20: 12154-12165. https://doi.org/10.3390/molecules200712154
  68. Suthanthangjai W, Kilmartin PA, Phillips ARJ, Davies K, Ansell J. 2014. Bioconversion of Pinot Noir anthocyanins into bioactive phenolic compounds by lactic acid bacteria. Nutr. Aging 2: 145-149.
  69. Lee Y, Oh J, Jeong YS. 2015. Lactobacillus plantarum-mediated conversion of flavonoid glycosides into flavonols, quercetin, and kaempferol in Cudrania tricuspidata leaves. Food Sci. Biotechnol. 24: 1817-1821. https://doi.org/10.1007/s10068-015-0237-2
  70. Lee NK, Jeewanthi RK, Park EH, Paik HD. 2016. Physicochemical and antioxidant properties of Cheddar-type cheese fortified with Inula britannica extract. J. Dairy Sci. 99: 83-88. https://doi.org/10.3168/jds.2015-9935
  71. Landete JM, Curiel JA, Rodríguez H, de las Rivas B, Munoz R. 2008. Study of the inhibitory activity of phenolic compounds found in olive products and their degradation by Lactobacillus plantarum strains. Food Chem. 107: 320-326. https://doi.org/10.1016/j.foodchem.2007.08.043
  72. Ku S, You HJ, Park MS, Ji GE. 2015. Effects of ascorbic acid on ${\alpha}$-L-arabinofuranosidase and ${\alpha}$-L-arabinopyranosidase activities from Bifidobacterium longum RD47 and its application to whole cell bioconversion of ginsenoside. J. Korean Soc. Appl. Biol. Chem. 58: 857-865. https://doi.org/10.1007/s13765-015-0113-z
  73. Quan LH, Cheng LQ, Kim HB, Kim JH, Son NR, Kim SY, et al. 2010. Bioconversion of ginsenoside Rd into compound K by Lactobacillus pentosus DC101 isolated from kimchi. J. Ginseng Res. 34: 288-295. https://doi.org/10.5142/jgr.2010.34.4.288
  74. Chi H, Kim DH, Ji GE. 2005. Transformation of ginsenosides Rb2 and Rc from Panax ginseng by food microbial enzyme. Biol. Pharm. Bull. 28: 2102-2105. https://doi.org/10.1248/bpb.28.2102
  75. Chi H, Ji GE. 2005. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol. Lett. 27: 765-771. https://doi.org/10.1007/s10529-005-5632-y
  76. Chi H, Lee BH, You HJ, Park MS, Ji GE. 2006. Different transformation of ginsenosides from Panax ginseng by lactic acid bacteria. J. Microbiol. Biotechnol. 16: 1629-1633.
  77. Li HZ, Gao DD, Cao YS, Xu HY. 2008. A high gammaaminobutyric acid-producing Lactobacillus brevis isolated from Chinese traditional paocai. Ann. Microbiol. 58: 649-653. https://doi.org/10.1007/BF03175570
  78. Binh TTT, Ju WT, Jung WJ, Park RD. 2014. Optimization of gamma-amino butyric acid production in a newly isolated Lactobacillus brevis. Biotechnol. Lett. 36: 93-98. https://doi.org/10.1007/s10529-013-1326-z
  79. Barrett E, Ross RP, O'Toole PWO, Fitzgerald GF, Stanton C. 2012. Gamma-aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113: 411-417. https://doi.org/10.1111/j.1365-2672.2012.05344.x

Cited by

  1. Effect of Lactic Acid Bacteria-Fermented Mulberry Leaf Extract on the Improvement of Intestinal Function in Rats vol.37, pp.4, 2017, https://doi.org/10.5851/kosfa.2017.37.4.561
  2. Antioxidative and Antiaging Activities and Component Analysis of Lespedeza cuneata G. Don Extracts Fermented with Lactobacillus pentosus vol.27, pp.11, 2017, https://doi.org/10.4014/jmb.1706.06028
  3. Does the intestinal microenvironment have an impact on the choleretic effect of inchinkoto, a hepatoprotective herbal medicine? vol.48, pp.3, 2018, https://doi.org/10.1111/hepr.12985
  4. Substrate sustained release-based high efficacy biosynthesis of GABA by Lactobacillus brevis NCL912 vol.17, pp.None, 2017, https://doi.org/10.1186/s12934-018-0919-6
  5. Getting value from the waste: recombinant production of a sweet protein by Lactococcus lactis grown on cheese whey vol.17, pp.None, 2017, https://doi.org/10.1186/s12934-018-0974-z
  6. Microbiological and Functional Characterization of Kefir Grown in Different Sugar Solutions vol.25, pp.2, 2017, https://doi.org/10.3136/fstr.25.303
  7. Conversion of Plant Secondary Metabolites upon Fermentation of Mercurialis perennis L. Extracts with two Lactobacteria Strains vol.5, pp.2, 2017, https://doi.org/10.3390/fermentation5020042
  8. Complete Genome Sequence of Leuconostoc kimchii Strain NKJ218, Isolated from Homemade Kimchi vol.8, pp.27, 2019, https://doi.org/10.1128/mra.00367-19
  9. Bioelectrochemical Detoxification of Phenolic Compounds during Enzymatic Pre-Treatment of Rice Straw vol.29, pp.11, 2019, https://doi.org/10.4014/jmb.1909.09042
  10. Identification, Classification and Screening for γ-Amino-butyric Acid Production in Lactic Acid Bacteria from Cambodian Fermented Foods vol.9, pp.12, 2019, https://doi.org/10.3390/biom9120768
  11. Interleukin-8 Release Inhibitors Generated by Fermentation of Artemisia princeps Pampanini Herb Extract With Lactobacillus plantarum SN13T vol.11, pp.None, 2017, https://doi.org/10.3389/fmicb.2020.01159
  12. Ginsenoside Rb1 exerts neuroprotective effects through regulation of Lactobacillus helveticus abundance and GABAA receptor expression vol.44, pp.1, 2020, https://doi.org/10.1016/j.jgr.2018.09.002
  13. Inducing Intermediates in Biotransformation of Natural Polyacetylene and A Novel Spiro-γ-Lactone from Red Ginseng by Solid Co-Culture of Two Gut Chaetomium globosum and The Potential Bioactivi vol.25, pp.5, 2020, https://doi.org/10.3390/molecules25051216
  14. Bioconversion Products of Whey by Lactic Acid Bacteria Exert Anti-Adipogenic Effect vol.41, pp.1, 2021, https://doi.org/10.5851/kosfa.2020.e78
  15. Gut–Brain–Skin Axis in Psoriasis: A Review vol.11, pp.1, 2017, https://doi.org/10.1007/s13555-020-00466-9
  16. Biotransformation of Flavonoids by Newly Isolated and Characterized Lactobacillus pentosus NGI01 Strain from Kimchi vol.9, pp.5, 2017, https://doi.org/10.3390/microorganisms9051075
  17. Effect of Lactic Acid Bacteria on the Pharmacokinetics and Metabolism of Ginsenosides in Mice vol.13, pp.9, 2017, https://doi.org/10.3390/pharmaceutics13091496
  18. Probiotics-Mediated Bioconversion and Periodontitis vol.41, pp.6, 2021, https://doi.org/10.5851/kosfa.2021.e57
  19. Effect of a bioconverted product of Lotus corniculatus seed on the axillary microbiome and body odor vol.11, pp.1, 2017, https://doi.org/10.1038/s41598-021-89606-5
  20. Fermented Oyster Extract Attenuated Dexamethasone-Induced Muscle Atrophy by Decreasing Oxidative Stress vol.26, pp.23, 2021, https://doi.org/10.3390/molecules26237128
  21. Phytochemicals levels and biological activities in Hibiscus sabdariffa L. were enhanced using microbial fermentation vol.176, pp.None, 2017, https://doi.org/10.1016/j.indcrop.2021.114408