DOI QR코드

DOI QR Code

Genetic Diversity and Antibiotic Resistance of Enterococcus faecalis Isolates from Traditional Korean Fermented Soybean Foods

  • Lee, Jong-Hoon (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Shin, Donghun (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Lee, Bitnara (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Lee, Hyundong (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Lee, Inhyung (Department of Bio and Fermentation Convergence Technology, Kookmin University) ;
  • Jeong, Do-Won (Department of Food and Nutrition, Dongduk Women's University)
  • Received : 2016.12.20
  • Accepted : 2017.02.24
  • Published : 2017.05.28

Abstract

Eighty-five Enterococcus faecalis isolates collected from animals (40 isolates), meju (a Korean fermented soybean product; 27 isolates), humans (10 isolates), and various environmental samples (8 isolates) were subjected to multilocus sequence typing (MLST) to identify genetic differences between samples of different origins. MLST analysis resulted in 44 sequence types (STs), and the eBURST algorithm clustered the STs into 21 clonal complexes (CCs) and 17 singletons. The predominant STs, ST695 (21.1%, 18/85) and ST694 (9.4%, 8/85), were singletons, and only contained isolates originating from meju. None of the STs in the current study belonged to CC2 or CC9, which comprise clinical isolates with high levels of antibiotic resistance. The E. faecalis isolates showed the highest rates of resistance to tetracycline (32.9%), followed by erythromycin (9.4%) and vancomycin (2.4%). All isolates from meju were sensitive to these three antibiotics. Hence, MLST uncovered genetic diversity within E. faecalis, and clustering of the STs using eBURST revealed a correlation between the genotypes and origins of the isolates.

Keywords

References

  1. Santos MM, Piccirillo C, Castro PM, Kalogerakis N, Pintado ME. 2012. Bioconversion of oleuropein to hydroxytyrosol by lactic acid bacteria. World J. Microbiol. Biotechnol. 28: 2435- 2440. https://doi.org/10.1007/s11274-012-1036-z
  2. Foulquie Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L. 2006. The role and application of enterococci in food and health. Int. J. Food Microbiol. 106: 1-24. https://doi.org/10.1016/j.ijfoodmicro.2005.06.026
  3. Franz CM, van Belkum MJ, Holzapfel WH, Abriouel H, Galvez A. 2007. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol. Rev. 31: 293-310. https://doi.org/10.1111/j.1574-6976.2007.00064.x
  4. Adams MR. 1999. Safety of industrial lactic acid bacteria. J. Biotechnol. 68: 171-178. https://doi.org/10.1016/S0168-1656(98)00198-9
  5. Patel G, Snydman DR, Practice ASTIDCo. 2013. Vancomycinresistant Enterococcus infections in solid organ transplantation. Am. J. Transplant. 13 Suppl 4: 59-67. https://doi.org/10.1111/ajt.12099
  6. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, et al. 2008. NHSN annual update: antimicrobialresistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006-2007. Infect. Control Hosp. Epidemiol. 29: 996-1011. https://doi.org/10.1086/591861
  7. Perez-Pulido R, Abriouel H, Ben Omar N, Lucas R, Martinez-Canamero M, Galvez A. 2006. Safety and potential risks of enterococci isolated from traditional fermented capers. Food Chem. Toxicol. 44: 2070-2077. https://doi.org/10.1016/j.fct.2006.07.008
  8. DiazGranados CA, Zimmer SM, Klein M, Jernigan JA. 2005. Comparison of mortality associated with vancomycinresistant and vancomycin-susceptible enterococcal bloodstream infections: a meta-analysis. Clin. Infect. Dis. 41: 327-333. https://doi.org/10.1086/430909
  9. Kara A, Devrim I, Bayram N, Katipoglu N, Kiran E, Oruc Y, et al. 2015. Risk of vancomycin-resistant enterococci bloodstream infection among patients colonized with vancomycin-resistant enterococci. Braz. J. Infect. Dis. 19: 58-61. https://doi.org/10.1016/j.bjid.2014.09.010
  10. Jeong DW, Kim HR, Jung G, Han S, Kim CT, Lee JH. 2014. Bacterial community migration in the ripening of doenjang, a traditional Korean fermented soybean food. J. Microbiol. Biotechnol. 24: 648-660. https://doi.org/10.4014/jmb.1401.01009
  11. Nallapareddy SR, Wenxiang H, Weinstock GM, Murray BE. 2005. Molecular characterization of a widespread, pathogenic, and antibiotic resistance-receptive Enterococcus faecalis lineage and dissemination of its putative pathogenicity island. J. Bacteriol. 187: 5709-5718. https://doi.org/10.1128/JB.187.16.5709-5718.2005
  12. Kawalec M, Pietras Z, Danilowicz E, Jakubczak A, Gniadkowski M, Hryniewicz W, et al. 2007. Clonal structure of Enterococcus faecalis isolated from Polish hospitals: characterization of epidemic clones. J. Clin. Microbiol. 45: 147-153. https://doi.org/10.1128/JCM.01704-06
  13. Kuch A, Willems RJ, Werner G, Coque TM, Hammerum AM, Sundsfjord A, et al. 2012. Insight into antimicrobial susceptibility and population structure of contemporary human Enterococcus faecalis isolates from Europe. J. Antimicrob. Chemother. 67: 551-558. https://doi.org/10.1093/jac/dkr544
  14. McBride SM, Fischetti VA, Leblanc DJ, Moellering RC Jr, Gilmore MS. 2007. Genetic diversity among Enterococcus faecalis. PLoS One 2: e582. https://doi.org/10.1371/journal.pone.0000582
  15. Freitas AR, Coque TM, Novais C, Hammerum AM, Lester CH, Zervos MJ, et al. 2011. Human and swine hosts share vancomycin-resistant Enterococcus faecium CC17 and CC5 and Enterococcus faecalis CC2 clonal clusters harboring Tn1546 on indistinguishable plasmids. J. Clin. Microbiol. 49: 925-931. https://doi.org/10.1128/JCM.01750-10
  16. Campanile F, Bartoloni A, Bartalesi F, Borbone S, Mangani V, Mantella A, et al. 2003. Molecular alterations of VanA element in vancomycin-resistant enterococci isolated during a survey of colonized patients in an Italian intensive care unit. Microb. Drug Resist. 9: 191-199. https://doi.org/10.1089/107662903765826796
  17. Ruiz-Garbajosa P, Bonten MJ, Robinson DA, Top J, Nallapareddy SR, Torres C, et al. 2006. Multilocus sequence typing scheme for Enterococcus faecalis reveals hospitaladapted genetic complexes in a background of high rates of recombination. J. Clin. Microbiol. 44: 2220-2228. https://doi.org/10.1128/JCM.02596-05
  18. Kuhn I, Burman LG, Haeggman S, Tullus K, Murray BE. 1995. Biochemical fingerprinting compared with ribotyping and pulsed-field gel electrophoresis of DNA for epidemiological typing of enterococci. J. Clin. Microbiol. 33: 2812-2817.
  19. Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. 2004. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J. Bacteriol. 186: 1518-1530. https://doi.org/10.1128/JB.186.5.1518-1530.2004
  20. Urwin R, Maiden MC. 2003. Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol. 11: 479-487. https://doi.org/10.1016/j.tim.2003.08.006
  21. Chung YS, Kwon KH, Shin S, Kim JH, Park YH, Yoon JW. 2014. Characterization of veterinary hospital-associated isolates of Enterococcus species in Korea. J. Microbiol. Biotechnol. 24: 386-393. https://doi.org/10.4014/jmb.1310.10088
  22. Stecher G, Liu L, Sanderford M, Peterson D, Tamura K, Kumar S. 2014. MEGA-MD: molecular evolutionary genetics analysis software with mutational diagnosis of amino acid variation. Bioinformatics 30: 1305-1307. https://doi.org/10.1093/bioinformatics/btu018
  23. Nei M, Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol. Biol. Evol. 3: 418-426.
  24. Clinical and Laboratory Standards Institute. 2007. Performance standards for antimicrobial susceptibility testing; seventeenth informational supplement. CLSI domument M100-S17. CLSI, Wayne, PA. USA.
  25. Guerrero-Ramos E, Cordero J, Molina-Gonzalez D, Poeta P, Igrejas G, Alonso-Calleja C, et al. 2016. Antimicrobial resistance and virulence genes in enterococci from wild game meat in Spain. Food Microbiol. 53: 156-164. https://doi.org/10.1016/j.fm.2015.09.007
  26. Maasjost J, Muhldorfer K, de Jackel SC, Hafez HM. 2015. Antimicrobial susceptibility patterns of Enterococcus faecalis and Enterococcus faecium isolated from poultry flocks in Germany. Avian Dis. 59: 143-148. https://doi.org/10.1637/10928-090314-RegR
  27. Furlaneto-Maia L, Rocha KR, Siqueira VL, Furlaneto MC. 2014. Comparison between automated system and PCR-based method for identification and antimicrobial susceptibility profile of clinical Enterococcus spp. Rev. Instit. Med. Trop. Sao Paulo 56: 97-103. https://doi.org/10.1590/S0036-46652014000200002
  28. Quinones D, Kobayashi N, Nagashima S. 2009. Molecular epidemiologic analysis of Enterococcus faecalis isolates in Cuba by multilocus sequence typing. Microb. Drug Resist. 15: 287-293. https://doi.org/10.1089/mdr.2009.0028
  29. Poulsen LL, Bisgaard M, Son NT, Trung NV, An HM, Dalsgaard A. 2012. Enterococcus faecalis clones in poultry and in humans with urinary tract infections, Vietnam. Emerg. Infect. Dis. 18: 1096-1100. https://doi.org/10.3201/eid1807.111754
  30. Ruiz-Garbajosa P, Canton R, Pintado V, Coque TM, Willems R, Baquero F, et al. 2006. Genetic and phenotypic differences among Enterococcus faecalis clones from intestinal colonisation and invasive disease. Clin. Microbiol. Infect. 12: 1193-1198. https://doi.org/10.1111/j.1469-0691.2006.01533.x
  31. Lopez M, Rezusta A, Seral C, Aspiroz C, Marne C, Aldea MJ, et al. 2012. Detection and characterization of a ST6 clone of vanB2-Enterococcus faecalis from three different hospitals in Spain. Eur. J. Clin. Microbiol. Infect. Dis. 31: 257-260. https://doi.org/10.1007/s10096-011-1303-1
  32. Leavis HL, Bonten MJ, Willems RJ. 2006. Identification of high-risk enterococcal clonal complexes: global dispersion and antibiotic resistance. Curr. Opin. Microbiol. 9: 454-460. https://doi.org/10.1016/j.mib.2006.07.001
  33. Rathnayake IU, Hargreaves M, Huygens F. 2011. Genotyping of Enterococcus faecalis and Enterococcus faecium isolates by use of a set of eight single nucleotide polymorphisms. J. Clin. Microbiol. 49: 367-372. https://doi.org/10.1128/JCM.01120-10
  34. Solheim M, Brekke MC, Snipen LG, Willems RJ, Nes IF, Brede DA. 2011. Comparative genomic analysis reveals significant enrichment of mobile genetic elements and genes encoding surface structure-proteins in hospital-associated clonal complex 2 Enterococcus faecalis. BMC Microbiol. 11: 3. https://doi.org/10.1186/1471-2180-11-3
  35. Jamet E, Akary E, Poisson MA, Chamba JF, Bertrand X, Serror P. 2012. Prevalence and characterization of antibiotic resistant Enterococcus faecalis in French cheeses. Food Microbiol. 31: 191-198. https://doi.org/10.1016/j.fm.2012.03.009
  36. Arias CA, Murray BE. 2012. The rise of the Enterococcus: beyond vancomycin resistance. Nat. Rev. Microbiol. 10: 266-278. https://doi.org/10.1038/nrmicro2761

Cited by

  1. Occurrence of Antibiotic Resistance and Virulent Factors in Enterococcus faecalis Isolated from Bush Meat Roasted and Sold along Road Sides in Ekiti State vol.10, pp.1, 2017, https://doi.org/10.3923/crb.2017.9.15
  2. Transcriptomic Profiling of Human Placental Trophoblasts in Response to Infection with Enterococcus faecalis vol.2018, pp.None, 2017, https://doi.org/10.1155/2018/5607641
  3. Comparative genome analysis reveals key genetic factors associated with probiotic property in Enterococcus faecium strains vol.19, pp.None, 2017, https://doi.org/10.1186/s12864-018-5043-9
  4. Genomic Insight into the Salt Tolerance of Enterococcus faecium, Enterococcus faecalis and Tetragenococcus halophilus vol.29, pp.10, 2017, https://doi.org/10.4014/jmb.1908.08015
  5. Enterococcus 속 박테리아의 안전성과 식품발효용 종균 개발의 방향성 vol.52, pp.1, 2017, https://doi.org/10.9721/kjfst.2020.52.1.11
  6. Selection of Lactococcus lactis HY7803 for Glutamic Acid Production Based on Comparative Genomic Analysis vol.31, pp.2, 2021, https://doi.org/10.4014/jmb.2011.11022
  7. Characterization of oxazolidinone and phenicol resistance genes in non-clinical enterococcal isolates from Korea vol.24, pp.None, 2017, https://doi.org/10.1016/j.jgar.2021.01.009