DOI QR코드

DOI QR Code

Dynamic properties of gel-type biopolymer-treated sands evaluated by Resonant Column (RC) Tests

  • Im, Jooyoung (Department of Civil Engineering, Korean Advanced Institute for Science and Technology) ;
  • Tran, An T.P. (Department of Civil Engineering, Korean Advanced Institute for Science and Technology) ;
  • Chang, Ilhan (School of Engineering and Information Technology, University of New South Wales) ;
  • Cho, Gye-Chun (Department of Civil Engineering, Korean Advanced Institute for Science and Technology)
  • Received : 2016.10.14
  • Accepted : 2017.02.14
  • Published : 2017.05.25

Abstract

Due to numerous environmental concerns in recent years, the search for and the development of sustainable technologies have been pursued. In particular, environmentally friendly methods of soil improvement, such as the potential use of biopolymers, have been researched. Previous studies on the use of biopolymers in soil improvement have shown that they can provide substantial strengthening efficiencies. However, in order to fully understand the applicability of biopolymer treated soils, various properties of these soils such as their dynamic properties must be considered. In this study, the dynamic properties of gel-type biopolymer treated soils were observed through the use of resonant column tests. Gellan gum and Xanthan gums were the target gel-type biopolymers used in this study, and the target soil for this study was jumunjin sand, the standard sand of Korea. Through this study it was demonstrated that biopolymers can be used to enhance the dynamic properties of the soil, and that they offer possibilities of reuse to reduce earthquake related soil failures.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF), Ministry of Land, Infrastructure, and Transport

References

  1. Acar, Y.B. and El-Tahir, E.-T.A. (1986), "Low strain dynamic properties of artificially cemented sand", J. Geotech. Eng., 112(11), 1001-1015. https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1001)
  2. Ardeshiri-Lajimi, S., Yazdani, M. and Assadi Langroudi, A. (2016), "A Study on the liquefaction risk in seismic design of foundations", Geomech. Eng., Int. J., 11(6), 805-820. https://doi.org/10.12989/gae.2016.11.6.805
  3. Ayeldeen, M.K., Negm, A.M. and El Sawwaf, M.A. (2016), "Evaluating the physical characteristics of biopolymer/soil mixtures", Arab. J. Geosci., 9(5), 1-13. https://doi.org/10.1007/s12517-015-2098-7
  4. Bajaj, I.B., Survase, S.A., Saudagar, P.S. and Singhal, R.S. (2007), "Gellan gum: Fermentative production, downstream processing and applications", Food Technol. Biotechnol., 45(4), 341.
  5. Bergmann, D., Furth, G. and Mayer, C. (2008), "Binding of bivalent cations by xanthan in aqueous solution", Int. J. Biol. Macromol., 43(3), 245-251. https://doi.org/10.1016/j.ijbiomac.2008.06.001
  6. Bouazza, A., Gates, W. and Ranjith, P. (2009), "Hydraulic conductivity of biopolymer-treated silty sand", Geotechnique, 59(1), 71-72. https://doi.org/10.1680/geot.2007.00137
  7. Casas, J.A., Santos, V.E. and Garcia-Ochoa, F. (2000), "Xanthan gum production under several operational conditions: molecular structure and rheological properties*", Enzyme Microb. Tech., 26(2-4), 282-291. https://doi.org/10.1016/S0141-0229(99)00160-X
  8. Chae, Y.S. and Au, W.-C. (1978), "Dynamic shear modulus and damping in additive - Treated expansive soils I II".
  9. Chae, Y. and Chiang, Y. (1973), "Dynamic behavior of weak soils treated with additives", Proceedings of the 5th World Conference on Earthquake Engineering, Rome, Italy, June, pp. 1606-1610.
  10. Chandrasekaran, R. and Radha, A. (1995), "Molecular architectures and functional properties of gellan gum and related polysaccharides", Trends Food Sci. Tech., 6(5), 143-148. https://doi.org/10.1016/S0924-2244(00)89022-6
  11. Chang, I. and Cho, G.-C. (2012), "Strengthening of Korean residual soil with ${\beta}$-1,3/1,6-glucan biopolymer", Constr. Build. Mater., 30, 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030
  12. Chang, I. and Cho, G.-C. (2014), "Geotechnical behavior of a ${\beta}$-1,3/1,6-glucan biopolymer-treated residual soil", Geomech. Eng., Int. J., 7(6), 633-647. https://doi.org/10.12989/gae.2014.7.6.633
  13. Chang, I., Im, J., Prasidhi, A.K. and Cho, G.-C. (2015a), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
  14. Chang, I., Jeon, M. and Cho, G.-C. (2015b), "Application of microbial biopolymers as an alternative construction binder for earth buildings in underdeveloped countries", Int. J. Polym. Sci., 9.
  15. Chang, I., Prasidhi, A.K., Im, J. and Cho, G.-C. (2015c), "Soil strengthening using thermo-gelation biopolymers", Constr. Build. Mater., 77, 430-438. https://doi.org/10.1016/j.conbuildmat.2014.12.116
  16. Chang, I., Prasidhi, A.K., Im, J., Shin, H.-D. and Cho, G.-C. (2015d), "Soil treatment using microbial biopolymers for anti-desertification purposes", Geoderma, 253-254, 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006
  17. Chang, I., Im, J. and Cho, G.-C. (2016a), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475
  18. Chang, I., Im, J. and Cho, G.-C. (2016b), "Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering", Sustainability, 8(3), 251. https://doi.org/10.3390/su8030251
  19. Chen, R., Lee, I. and Zhang, L. (2014), "Biopolymer stabilization of mine tailings for dust control", J. Geotech. Geoenviron. Eng., 141(2), 04014100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001240
  20. Comba, S. and Sethi, R. (2009), "Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum", Water Res., 43(15), 3717-3726. https://doi.org/10.1016/j.watres.2009.05.046
  21. Davidson, R.L. (1980), Handbook of Water-Soluble Gums and Resins, McGraw-Hill, New York; London.
  22. Delfosse-Ribay, E., Djeran-Maigre, I., Cabrillac, R. and Gouvenot, D. (2004), "Shear modulus and damping ratio of grouted sand", Soil Dyn. Earthq. Eng., 24(6), 461-471. https://doi.org/10.1016/j.soildyn.2004.02.004
  23. Drnevich, V., Hardin, B. and Shippy, D. (1978), "Modulus and damping of soils by the resonant-column method", Dyn. Geotech. Test., ASTM International.
  24. EarthquakeTrack (2016), Recent earthquakes near South Korea; Earthquake Track. Retrieved October 11, 2016. Accessible at: http://earthquaketrack.com/p/south-korea/recent
  25. Garcia, M.C., Alfaro, M.C., Calero, N. and Munoz, J. (2011), "Influence of gellan gum concentration on the dynamic viscoelasticity and transient flow of fluid gels", Biochem. Eng. J., 55(2), 73-81. https://doi.org/10.1016/j.bej.2011.02.017
  26. Grasdalen, H. and Smidsr, O. (1987), "Gelation of gellan gum", Carbohyd. Polym., 7(5), 371-393. https://doi.org/10.1016/0144-8617(87)90004-X
  27. Ha, I.-S., Olson, S.M., Seo, M.-W. and Kim, M.-M. (2011), "Evaluation of reliquefaction resistance using shaking table tests", Soil Dyn. Earthq. Eng., 31(4), 682-691. https://doi.org/10.1016/j.soildyn.2010.12.008
  28. Huang, M., Kennedy, J.F., Li, B., Xu, X. and Xie, B.J. (2007), "Characters of rice starch gel modified by gellan, carrageenan, and glucomannan: A texture profile analysis study", Carbohyd. Polym., 69(3), 411-418. https://doi.org/10.1016/j.carbpol.2006.12.025
  29. Imeson, A. (2010), Food Stabilisers, Thickeners and Gelling Agents, Wiley-Blackwell Publication, Chichester, UK; Ames, IA, USA.
  30. Jansson, P.-e., Kenne, L. and Lindberg, B. (1975), "Structure of the extracellular polysaccharide from Xanthomonas campestris", Carbohyd. Res., 45(1), 275-282. https://doi.org/10.1016/S0008-6215(00)85885-1
  31. Khachatoorian, R., Petrisor, I.G., Kwan, C.-C. and Yen, T.F. (2003), "Biopolymer plugging effect: Laboratory-pressurized pumping flow studies", J. Petrol. Sci. Eng., 38(1-2), 13-21. https://doi.org/10.1016/S0920-4105(03)00019-6
  32. Kim, S. and Park, K. (2008), "Proposal of liquefaction potential assessment procedure using real earthquake loading", KSCE J. Civil Eng., 12(1), 15-24. https://doi.org/10.1007/s12205-008-8015-9
  33. Kim, D.-S. and Stokoe, K.H. (1994), "Torsional Motion Monitoring System for Small-Strain (10- 5 to 10-3%) Soil Testing", Geotech. Test. J., 17(1), 17-26. https://doi.org/10.1520/GTJ10068J
  34. Laneuville, S.I., Turgeon, S.L., Sanchez, C. and Paquin, P. (2006), "Gelation of native beta-lactoglobulin induced by electrostatic attractive interaction with xanthan gum", Langmuir, 22(17), 7351-7357. https://doi.org/10.1021/la060149+
  35. Lee, K.Y., Shim, J. and Lee, H.G. (2004), "Mechanical properties of gellan and gelatin composite films", Carbohyd. Polym., 56(2), 251-254. https://doi.org/10.1016/j.carbpol.2003.04.001
  36. Melton, L.D., Mindt, L. and Rees, D.A. (1976), "Covalent structure of the extracellular polysaccharide from Xanthomonas campestris: Evidence from partial hydrolysis studies", Carbohyd. Res., 46(2), 245-257. https://doi.org/10.1016/S0008-6215(00)84296-2
  37. Mitchell, J. and Santamarina, J. (2005), "Biological considerations in geotechnical engineering", J. Geotech. Geoenviron. Eng., 131(10), 1222-1233. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222)
  38. Morris, E.R., Nishinari, K. and Rinaudo, M. (2012), "Gelation of gellan - A review", Food Hydrocolloids, 28(2), 373-411. https://doi.org/10.1016/j.foodhyd.2012.01.004
  39. Nolte, H., John, S., Smidsrod, O. and Stokke, B.T. (1992), "Gelation of xanthan with trivalent metal ions", Carbohyd. Polym., 18(4), 243-251. https://doi.org/10.1016/0144-8617(92)90089-9
  40. Nugent, R.A., Zhang, G.P. and Gambrell, R.P. (2009), "Effect of exopolymers on the liquid limit of clays and its engineering implications", Transp. Res. Record, 2101, 34-43. https://doi.org/10.3141/2101-05
  41. Park, L.K., Suneel, M. and Chul, I.J. (2008), "Shear strength of jumunjin sand according to relative density", Mar. Georesour. Geotech., 26(2), 101-110. https://doi.org/10.1080/10641190802022445
  42. Peng, X., Hallett, P.D., Zhang, B. and Horn, R. (2011), "Physical response of rigid and non-rigid soils to analogues of biological exudates", Eur. J. Soil Sci., 62(5), 676-684. https://doi.org/10.1111/j.1365-2389.2011.01383.x
  43. Plank, J. (2004), "Applications of biopolymers and other biotechnological products in building materials", Appl. Microbiol. Biotech., 66(1), 1-9. https://doi.org/10.1007/s00253-004-1714-3
  44. Rosalam, S. and England, R. (2006), "Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp", Enzyme Microb. Tech., 39(2), 197-207. https://doi.org/10.1016/j.enzmictec.2005.10.019
  45. Sidik, W.S., Canakci, H., Kilic, I.H. and Celik, F. (2014), "Applicability of biocementation for organic soil and its effect on permeability", Geomech. Eng., Int. J., 7(6), 649-663. https://doi.org/10.12989/gae.2014.7.6.649
  46. Smitha, S. and Sachan, A. (2016), "Use of agar biopolymer to improve the shear strength behavior of sabarmati sand", Int. J. Geotech. Eng., 10(4), 387-400. https://doi.org/10.1080/19386362.2016.1152674
  47. Sun, C. and Gunasekaran, S. (2009), "Effects of protein concentration and oil-phase volume fraction on the stability and rheology of menhaden oil-in-water emulsions stabilized by whey protein isolate with xanthan gum", Food Hydrocolloids, 23(1), 165-174. https://doi.org/10.1016/j.foodhyd.2007.12.006
  48. Tang, J., Tung, M.A. and Zeng, Y. (1997), "Gelling properties of gellan solutions containing monovalent and divalent cations", J. Food Sci., 62(4), 688-692. https://doi.org/10.1111/j.1365-2621.1997.tb15436.x
  49. Tsai, P.-H. and Ni, S.-H. (2012), "Effects of types of additives on dynamic properties of cement stabilized soils", Int. J. Appl. Sci. Eng., 10(2), 131-144.
  50. Upstill, C., Atkins, E.D.T. and Attwool, P.T. (1986), "Helical conformations of gellan gum", Int. J. Biol. Macromol., 8(5), 275-288. https://doi.org/10.1016/0141-8130(86)90041-3
  51. USGS (2016), Earthquake Statistics; USGS - Earthquake Harzards Program. Earthquake Lists, Maps & Statistics; Retrieved October 11, 2016. Accessible at: https://earthquake.usgs.gov/earthquakes/browse/stats.php
  52. van den Berg, L., Carolas, A.L., van Vliet, T., van der Linden, E., van Boekel, M.A.J.S. and van de Velde, F. (2008), "Energy storage controls crumbly perception in whey proteins/polysaccharide mixed gels", Food Hydrocolloids, 22(7), 1404-1417. https://doi.org/10.1016/j.foodhyd.2007.08.006
  53. Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn, W.D.L., Harder Jr., L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.S.C., Marcuson, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., and Stokoe II,K.H. (2001), "Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils", J. Geotech Geoenviron. Eng., 127(10), 817-833. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:10(817)
  54. Zemmouri, H., Drouiche, M., Sayeh, A., Lounici, H. and Mameri, N. (2013), "Chitosan application for treatment of Beni-Amrane's water dam", Energy Procedia, 36, 558-564. https://doi.org/10.1016/j.egypro.2013.07.064
  55. Zohuriaan, M.J. and Shokrolahi, F. (2004), "Thermal studies on natural and modified gums", Polym. Test., 23(5), 575-579. https://doi.org/10.1016/j.polymertesting.2003.11.001

Cited by

  1. Bovine casein as a new soil strengthening binder from diary wastes vol.160, 2018, https://doi.org/10.1016/j.conbuildmat.2017.11.009
  2. Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay pp.1861-1133, 2018, https://doi.org/10.1007/s11440-018-0641-x
  3. Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands vol.17, pp.5, 2019, https://doi.org/10.12989/gae.2019.17.5.445
  4. Geotechnical engineering behavior of biopolymer-treated soft marine soil vol.17, pp.5, 2017, https://doi.org/10.12989/gae.2019.17.5.453
  5. Stress-strain behaviour of reinforced dredged sediment and expanded polystyrenes mixture under cyclic loading vol.17, pp.6, 2017, https://doi.org/10.12989/gae.2019.17.6.507
  6. Soil consistency and interparticle characteristics of xanthan gum biopolymer-containing soils with pore-fluid variation vol.56, pp.8, 2017, https://doi.org/10.1139/cgj-2018-0254
  7. Xanthan Gum Biopolymer as Soil-Stabilization Binder for Road Construction Using Local Soil in Sri Lanka vol.31, pp.11, 2017, https://doi.org/10.1061/(asce)mt.1943-5533.0002909
  8. A Review of the Application of Biopolymers on Geotechnical Engineering and the Strengthening Mechanisms between Typical Biopolymers and Soils vol.2020, pp.None, 2017, https://doi.org/10.1155/2020/1465709
  9. Performance evaluation of β-glucan treated lean clay and efficacy of its choice as a sustainable alternative for ground improvement vol.21, pp.5, 2020, https://doi.org/10.12989/gae.2020.21.5.413
  10. Effect of Biopolymer Treatment on Pore Pressure Response and Dynamic Properties of Silty Sand vol.32, pp.8, 2017, https://doi.org/10.1061/(asce)mt.1943-5533.0003285
  11. Effect of xanthan gum biopolymer on dispersive properties of soils vol.17, pp.4, 2017, https://doi.org/10.1108/wje-05-2020-0152
  12. Evaluation of Dynamic Properties and Ground-Response Analysis of Soil Reinforced with Cement and Biopolymer vol.20, pp.5, 2017, https://doi.org/10.9798/kosham.2020.20.5.291
  13. Torsional and flexural resonant column testing of grouted sands vol.139, pp.None, 2020, https://doi.org/10.1016/j.soildyn.2020.106360
  14. Dynamic behavior of clayey sand over a wide range using dynamic triaxial and resonant column tests vol.24, pp.2, 2017, https://doi.org/10.12989/gae.2021.24.2.105
  15. Dynamic Properties of Biopolymer-Treated Loose Silty Sand Evaluated by Cyclic Triaxial Test vol.50, pp.1, 2017, https://doi.org/10.1520/jte20210141
  16. Evaluation of Dynamic Properties of Sodium-Alginate-Reinforced Soil Using A Resonant-Column Test vol.14, pp.11, 2017, https://doi.org/10.3390/ma14112743
  17. Effect of Soft Viscoelastic Biopolymer on the Undrained Shear Behavior of Loose Sands vol.147, pp.8, 2021, https://doi.org/10.1061/(asce)gt.1943-5606.0002582
  18. Preliminary study on microbially modified expansive soil of embankment vol.26, pp.3, 2017, https://doi.org/10.12989/gae.2021.26.3.301