DOI QR코드

DOI QR Code

The Control of Spring-Mass-Damper Convergence System using H Controller and μ-Synthesis Controller

H 제어와 μ-합성 제어를 이용한 스프링-질량-감쇠 융합시스템 제어

  • 정성훈 (초당대학교 항공학부 드론학과)
  • Received : 2017.02.14
  • Accepted : 2017.05.20
  • Published : 2017.05.28

Abstract

With a given spring-mass-damper system, $H_{\infty}$ and ${\mu}$-synthesis control methods are used to build system controllers which minimize vibrations at two major natural frequencies in two cases; without uncertainty; with 20% uncertainty. In order to check the stability and performance of two controllers, those are examined using GM and PM values. The signal strength of output responses is compared using the concept of central numerical differentiation and then results are quantified using the RMS method. Lastly, 40 random samples of $H_{\infty}$ and ${\mu}$-synthesis controllers are obtained for three different $W_{per\;f1}$ weighting functions and drawn in the time domain in order to compare the stability. Overall, ${\mu}$-synthesis controller manages the vibrations much better than $H_{\infty}$ controller according to the robust stability and performance values obtained by simulating random samples of 40 plant models.

$H_{\infty}$ 제어와 뮤-합성 제어 방법을 사용하여 두 가지 상황, 즉 불확실성이 포함되지 않았을 때와 20% 불확실성이 포함되었을 때, 하에서 스프링-매스-댐퍼 시스템의 진동을 최소화하였다. 두 컨트롤러의 안정성 및 성능 파악을 위해 GM와 PM 값을 사용하여 분석되었다. 중앙 수치 미분법과 RMS 방법을 사용하여 출력 응답의 신호 강도가 비교되었다. 끝으로, 안정성 비교를 위하여 3가지 다른 $W_{per\;f1}$ 가중함수의 경우에 대해 총 40개의 $H_{\infty}$ 제어기와 뮤-합성 제어기 무작위 표본이 생성되었다. 전반적으로, 40개 플랜트 모델에서 얻어진 결과 값의 견고한 안정성과 성능 값에 따르면, 뮤-합성 제어기가 $H_{\infty}$ 제어기보다 진동 관리에 효과적임이 입증되었다.

Keywords

References

  1. W. Ma and S. Lee, "Modelling and Development of Control Algorithm of Endoscopy," Journal of IT Convergence Society for SMB, Vol. 4, No. 2, pp. 33-39, 2014
  2. S. D. Cairano, A. Bemporad, I. V. Kolmanovsky, and D. Hrovat, "Model Predictive Control of Magnetically Actuated Mass Spring Dampers for Automotive Applications," International Journal of Control, Vol. 80, No. 11, pp. 1701-1716, 2007. https://doi.org/10.1080/00207170701379804
  3. Q. Gu and Y. Zhai, "Adaptive Model Predictive Control for SI Engines Fuel Injection System," Journal of the Korea Convergence Society, Vol. 4, No. 3, pp. 43-50, 2013. https://doi.org/10.15207/JKCS.2013.4.3.043
  4. D. Karnopp, M. J. Crosby, and R. A. Harwood, "Vibration Control using Semi-Active Force Generators," Journal of Engineering for Industry, Vol. 96, No. 2, pp. 619-626, 1974. https://doi.org/10.1115/1.3438373
  5. S. J. Dyke, B. F. Spencer, M. K. Sain, and J. D. Carlson, "Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction," Smart Materials and Structures, Vol. 5, No. 5, pp. 565-575, 1996. https://doi.org/10.1088/0964-1726/5/5/006
  6. L. M. Janson and S. J. Dyke, "Semiactive Control Strategies for MR Dampers: Comparative Study," Journal of Engineering Mechanics, Vol. 126, No. 8, pp. 795-803, 2000. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:8(795)
  7. D. Hrovat, P. Barak, and M. Rabins, "Semi-Active versus Passive or Active Tuned Mass Dampers for Structural Control," Journal of Engineering Mechanics, Vo. 109, No. 3, pp. 691-705, 1983. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:3(691)
  8. N. Varadarajan and S. Nagarajaiah, "Wind Response Control of Building with Variable Stiffness Tuned Mass Damper Using Empirical Mode Decomposition/ Hilbert Transform," Journal of Engineering Mechanics, Vol. 130, No. 4, pp. 451-458, 2004. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(451)
  9. J. You, K. You, and Y. Kim, "Aerodynamic Across-Wind Response for a Tall Building using Tuned Liquid Column Damper," International Conference on Convergence Technology, Vol. 2, No. 1, pp. 2035-2036, 2013.
  10. https://goo.gl/635c7I
  11. J. Gadewadikar, F. L. Lewis, L. Xie, V. Kucera, and M. Abu-Khalaf, "Parameterization of All Stabilizing $H_{\infty}$ Static State-Feeback Gains: Application to Output-Feedback Design," Automatica, Vol. 43, No. 9, pp. 1597-1604, 2007. https://doi.org/10.1016/j.automatica.2007.02.005
  12. G. Kopasakis, "Feedback Control Systems Loop Shaping Design with Practical Considerations," National Aeronautics and Space Administration, pp. 1-35, 2007.
  13. E. J. M. Geddes and I. Postlethwaite, "An $H_{\infty}$ Based Loop Shaping Method and ${\mu}$-Synthesis," Proceedings of the 30th Conference on Decision and Control, pp. 533-538, 1991.
  14. S. Rhee, "Comparison Study of H-infinity Controller Design Algorithms for Spacecraft Attitude Control," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 4, No. 1, pp. 57-69, 2016.
  15. J. Gadewadikar, H-infinity Output-Feedback Control: Application to Unmanned Aerial Vehicle, The University of Texas at Arlington, PhD Thesis, 2007.
  16. J. Kim, Mathematical Model for Dynamic Performance Analysis of Multi-Wheel Vehicle, Journal of the Korea Convergence Society, Vol. 3, No. 4, pp. 35-44, 2012.
  17. Y. Zhai, Stable Tracking Control to a Non-linear Process Via Neural Network Model, Journal of the Korea Convergence Society, Vol. 5, No. 4, pp. 163-169, 2014. https://doi.org/10.15207/JKCS.2014.5.4.163
  18. T. Young and M. J. Mohlenkamp, Introduction to Numerical Methods and MATLAB Programming for Engineers, Ohio University, 2017.