DOI QR코드

DOI QR Code

Separation of Waste TNT and RDX Mixture Using SMB Process

SMB 공정을 이용한 폐기 TNT와 RDX 혼합 용액의 분리

  • Oh, Donghoon (Department of Chemical & Biomolecular Engineering Yonsei National University) ;
  • Kim, Sunhee (Department of Chemical & Biomolecular Engineering Yonsei National University) ;
  • Lee, Keundeuk (Agency for Defense Development) ;
  • Ahn, Iksung (Department of Chemical & Biomolecular Engineering Yonsei National University) ;
  • Lee, Chang-Ha (Department of Chemical & Biomolecular Engineering Yonsei National University)
  • 오동훈 (연세대학교 화학생명공학과) ;
  • 김선희 (연세대학교 화학생명공학과) ;
  • 이근득 (국방과학연구소 제 4기술연구본부) ;
  • 안익성 (연세대학교 화학생명공학과) ;
  • 이창하 (연세대학교 화학생명공학과)
  • Received : 2017.03.14
  • Accepted : 2017.05.15
  • Published : 2017.06.30

Abstract

Currently, researches on recycling and reuse of waste energetic materials have recently gained a great attention from advanced countries due to ever tightening environmental regulations. In this study, as a part of a recycling technology, the experiments and dynamic simulation of simulated moving bed (SMB) process were performed to efficiently separate TNT and RDX from their mixture, which are main components of ammunition. In order to determine the operation zone of SMB process, the retention times of TNT and RDX were measured using HPLC at different flow rates and the adsorption equilibrium of each component was obtained by using a moment method. According to the adsorption equilibrium and the triangle theory of SMB process, four operation points were determined and separation experiments were carried out by the SMB process using the solvent consisting of acetonitrile and water. Two different mixing ratios (6:4 and 1:1) of acetonitrile and water were chosen for the experiment due to the great impact of mixing ratio of the solvent on separation. The performance of SMB process was evaluated by purity, recovery, productivity and solvent consumption. Pure TNT and RDX were successfully obtained from the SMB process and the dynamic simulation for the SMB process agreed well with the experimental results. Therefore, the dynamic model could be applied for predicting the dynamic behavior of the SMB process and designing a large scale SMB process.

최근 폐 탄약의 회수를 통한 고에너지 물질의 재활용 및 재사용에 대한 연구가 선진국을 중심으로 활발히 진행되고 있다. 본 연구에서는 재활용 기술응용의 일환으로, 폐 탄약 처리 중 나오는 TNT와 RDX 혼합물을 모사이동층(SMB) 공정을 통해 효율적으로 분리하는 실험과 이에 대한 동적 모사를 수행하였다. SMB 공정의 운전 영역을 설정하기 위하여 혼합용액의 유속변화에 따른 각 물질의 체류시간을 HPLC로 측정하였으며, 모멘트 모델을 이용하여 흡착 컬럼에서 각 물질의 흡착평형을 분석하였다. 흡착 평형과 SMB 운전 삼각법을 통하여 4개의 운전 영역을 결정하였다. 결정된 운전 영역에서 아세토나이트릴과 물이 6:4와 1:1로 구성된 2가지 용매에 대해 SMB 공정을 이용한 분리 실험을 수행하였다. SMB 공정의 운전 조건 변화에 따른 순도, 회수율, 생산성, 용매소비량 등의 4가지 성능 지수를 평가하였다. 또한 SMB 공정에 대한 수학적 모델을 통하여 공정의 동적 모사를 수행하여 실험의 결과와 비교하였다. SMB 공정을 통해 100% 순도의 TNT와 RDX를 얻을 수 있었으며, 동적 모사 결과는 실험 결과와 잘 일치하여 공정 동적 거동 예측과 공정 설계에 적용할 수 있음을 확인하였다.

Keywords

References

  1. Cho, C. H., Heo, W. O., and Yoon, J. H., "A study on the Demilitarization of the Guided Missile," J. KIMST, 364, 91-98 (2010).
  2. Burch, D., Johnson, M. O., and Sims, K., "Value Added Products from Reclamation of Military Munitios," Waste Manage., 17, 159-163 (1997).
  3. http://17greengrowth.pa.go.kr (accessed Mar. 2012).
  4. Kim, K. S., "The Present State of Domestic Acceptance of Various International Conventions for the Prevention of Marine Pollution," J. Korean Soc. Mar. Environ. & Safety, 12, 293-300 (2006).
  5. Kim, H. S., "Basic Technologies for the Development of High Explosives," Korean. Chem. Eng. Res., 44, 435-443 (2006).
  6. http://www.ch2m.com/corporate/ (accessed 2009).
  7. http://www.dynasafe.com (accessed 2008).
  8. http://www.tbs-sct.gc.ca/pol/doc-eng.aspx?id=12063§io=text (accessed 2006).
  9. http://www.britanica.com (accessed 2008).
  10. Van Ham, N. H. A., "Recycling and Disposal of Munitions and Explosives," Waste Manage., 17, 147-150 (1997).
  11. Krause, H. H., "Recycling and Disposal Techniques for Energetic Materials," Demilitarisat. Munit., 16, 73-80 (1997).
  12. http://en.wikipedia.org/wiki (accessed 2008).
  13. Noyes, R., "Chemical Weapons Destruction and Explosive Waste / Unexploded Ordnance Remediation," Noyes Publications, Westwood., 235 (1996).
  14. Kim, S. H., Nyande, B. W., Kim, H. S., Park, J. S., Lee. W. J., and Oh. M., "Numerical Analysis of Thermal Decomposition for RDX, TNT and Composition B," Korean Chem. Eng. Res., (2016).
  15. Kim, K, K., "Operating Strategy Development Using Partial-Feed and Partial-Discard in Simulated Moving Bed Chromatography," M.S. Dissertation, University of Yonsei, Seoul, (2008).
  16. Minceva, M., Rodrigues, A. E., and Haley, M. V., "Modeling, Simulation and Optimization," UOP'S PAREX., (2016).
  17. Francotte, E. R., and Richert, P. A., "Applications of Simulated Moving Bed Chromatography to the Separation of the Enantiomers of Chiral Drugs," J. Chromatogr. A., 769, 101-107 (1997). https://doi.org/10.1016/S0021-9673(97)00172-6
  18. http://www.knauer.net/systems-solutions (accessed 2017).
  19. Song, J. Y., Oh D. H., and Lee C. H., "Effects of a Malfunctional Column on Conventional and FeedCol-simulated Moving Bed Chromatography Performance," J. Chromatogr. A., 1403, 104-117 (2015). https://doi.org/10.1016/j.chroma.2015.05.034
  20. Bae, Y. S., and Lee, C. H., "SMB Process for Chiral Separation Prospectives of Industrial Chemistry," 1st ed., John Wiley & Sons, INC., New Jersey (2003).
  21. Kim, K. M., Lee, C. H., "Back Fill-Simulated Moving Bed Operation for Improving the Separation Performance of Simulated Moving Bed Chromatography," J. Chromatogr. A., 1311, 79-89 (2013). https://doi.org/10.1016/j.chroma.2013.08.058
  22. Rajendran, A., Paredes, G., and Mazotti, M., "Simulated Moving Bed Chromatography for the Separation of Enantiomers Chromatography," J. Chromatogr. A., 1216, 709-739 (2009). https://doi.org/10.1016/j.chroma.2008.10.075
  23. Zang, Y., and Wankat, P. C., "SMB Operation Strategy-Partial Feed," Ind. Eng. Res., 41(10), 2504-2511 (2002). https://doi.org/10.1021/ie010832l
  24. Bae, Y. S., Moon, J. H., and Lee, C. H., "Effects of Feed Concentration on the Startup and Performance Behaviors of Simulated Moving Bed chromatography," Ind. Eng. Chem., 45(2), 777-790 (2006). https://doi.org/10.1021/ie0508886
  25. Mazzotti, M., Stori, G., and Morbidelli, M., "Optimal Operation of Simulated Moving Bed Units for Nonlinear Chromatographic Separation," J. Chromatogr. A., 805, 37-44 (1998). https://doi.org/10.1016/S0021-9673(98)00006-5
  26. Strube, J., Altenhoner, U., Meurer, M., Schimidt-Traub, H., and Schulte, M., "Dynamic Simulation of Simulated Moving-Bed Chromatographic Processes for the Optimization of Chiral Separations," J. Chromatogr. A., 769, 81-92 (1997). https://doi.org/10.1016/S0021-9673(97)00236-7
  27. Kniep, H., Mann, G., Vogel, C., and Seidel-Morgenstern, A., "Separation of Enantiomers through Simulated Moving-Bed Chromatography," Chem. Eng. Technol., 23, 853-857 (2000). https://doi.org/10.1002/1521-4125(200010)23:10<853::AID-CEAT853>3.0.CO;2-2
  28. Pais, L, S., Loureiro, J, M., and Rodrigues, A, E., "Modeling, Simulation and Operation of a Simulated Moving Bed for Continuous Chromatographic Separation of 1,1'-bi-2-naphthol Enantiomers," J. Chromatogr. A., 769, 25-35 (1997). https://doi.org/10.1016/S0021-9673(96)01076-X
  29. Strube, J., and Schmidt-Traub, H., "Dynamic Simulation of Simulated-Moving-Bed Chromatographic Processes," Comput. Chem. Eng., 22, 1309-1317 (1998). https://doi.org/10.1016/S0098-1354(98)00015-5
  30. Juza, M., Mazotti, M., and Morbidelli, M., "Simulated Moving-Bed Chromatography and Its Application to Chirotechnology," Tibitech., 18, 108-118 (2000). https://doi.org/10.1016/S0167-7799(99)01419-5