DOI QR코드

DOI QR Code

Analysis of Applicability of Orthophoto Using 3D Mesh on Aerial Image with Large File Size

대용량 항공영상에 3차원 메시를 이용한 정사영상의 적용성 분석

  • Received : 2017.04.23
  • Accepted : 2017.06.12
  • Published : 2017.06.30

Abstract

As the utilization of aerial images increases, a variety of software using unmanned aerial photogrammetric procedures as well as traditional aerial photogrammetric procedures are being provided. Previously, software that used the unmanned aerial photogrammetric procedure was used for images captured in small areas. Recently, however, software that uses unmanned aerial photogrammetric procedures for large-scale images taken by using aerial photogrammetric cameras has appeared. Therefore, this study generated ortho-images using aerial photogrammetry and unmanned aerial photogrammetry for large aerial images, and compared the features of both procedures through qualitative and quantitative comparisons. Experiments in the study area show that using the 3D mesh effectively removes the relief displacement of the building rather than using the digital surface model to generate ortho-images.

항공영상의 활용도가 높아짐에 따라 전통적인 항공사진측량 절차뿐만 아니라 무인항공사진측량 절차를 적용한 다양한 소프트웨어가 제공되고 있다. 기존에는 소규모 영역을 촬영한 영상에 대해서 무인항공사진측량 절차를 적용한 소프트웨어를 사용하였으나 최근에는 항공사진측량용 카메라를 이용하여 촬영한 대규모 영역에 대해서도 무인항공사진측량 절차를 적용한 소프트웨어가 등장하고 있다. 이에 따라 본 연구는 대용량 항공영상을 이용하여 항공사진측량 절차와 무인항공사진측량 절차로 각각 정사영상을 생성하고 정성적, 정량적인 비교를 통해서 두 절차의 특징을 비교하였다. 연구대상지역의 실험을 통해서 정사영상 생성 시 수치표면모델을 이용하는 방법 보다 3차원 메시를 이용하는 것이 건물의 기복변위를 효과적으로 제거하는 것을 알 수 있었다.

Keywords

References

  1. Aicardi, I., Chiabrando, F., Grasso, N., Lingua, A. M., Noardo, F., and Spano, A. (2016), UAV photogrammetry with oblique images: first analysis on data acquisition and processing, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 12-19 July 2016, Prague, Czech Republic, Vol. XLI-B1, pp. 835-842.
  2. Barazzetti, L., Brumana, R., Oreni, D., Previtali, M., and Roncoroni, F. (2014), True-orthophoto generation from UAV images: Implementation of a combined photogrammetric and computer vision approach, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 23-25 June 2014, Riva del Garda, Italy, Vol. 2, No. 5, pp. 57-63.
  3. Barazzetti, L., Previtali, M., and Roncoroni, F. (2017), Fisheye lenses for 3D modeling: evaluations and considerations, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1-3 March 2017, Nafpilo, Greece, Vol. XLII-2/W3, pp. 79-84.
  4. Bhandari, B., Oli, U., Pudasaini, U., and Panta, N. (2015), Generation of high resolution DSM using UAV images, FIG Working Week 2015, The International Federation of Surveyors, 17-21 May 2015, Sofia, Bulgaria, pp. 1-28.
  5. Choi, H.S. and Kim, E.M. (2017), Comparison of true orthoimage generated using photogrammetry and computer vision techniques, The 19th International Symposium of Geospatial Information Science and Urban Planning, Geospatial Information Science and Urban Planning, 16-18 February, 2017, Nagasaki, Japan, pp. 50-56.
  6. Habib, A.F., Kim, E.M., and Kim, C.J. (2007), New methodologies for ture orthophoto generation, Photogrammetic Engineering & Remote Sensing, Vol. 73, No. 1, pp. 25-36. https://doi.org/10.14358/PERS.73.1.25
  7. Kim, J.N. and Um, D,Y. (2015), High quality ortho-image production using the hisgh resolution DMC II aerial image, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 1, pp. 11-21. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2015.33.1.11
  8. Lee, H.J. (2008), Producing true orthophoto using multidimensional spatial information, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 26, No. 3, pp. 241-253. (in Korean with English abstract)
  9. Lim, S.B., Seo, C.W., and Yun, H.C. (2015), Digital map updates with UAV photogrammetric methods, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 5, pp. 397-405. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2015.33.5.397
  10. Marcis, M., Bartak, P., Valaska, D., Frastia, M., and Trhan, O. (2016), Use of image based modelling for documentation of intricately shaped objects, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 12-19, July 2016, Prague, Czech Republic, Vol. XLI-B5, pp. 327-334.
  11. MOLIT (2015), A study on 3D spatial information business promotion plan. (in Korean)
  12. Rabiu, L. and Waziri, D.A. (2014), Digital orthophoto generation with aerial photograph, Academic Journal of Interdisciplinary Studies, Vol. 3, No. 7, pp. 133-141.
  13. Verhoeven, G., Doneus, M., Briese, C., and Vermeulen, F. (2012), Mapping by matching: a computer visionbased approach to fast and accurate georeferencing of archaeological aerial photographs, Journal of Archaeological Science, Vol. 39, No. 7, pp. 2060-2070. https://doi.org/10.1016/j.jas.2012.02.022
  14. Westoby, M.J., Brasington, J., Glasser, N.F., Hambrey, M.J., and Reynolds, J.M. (2012), Structure-from-motion photogrammetry: a low-cost, effective tool for geoscience applications, Geomorphology, Vol. 179, pp. 300-314. https://doi.org/10.1016/j.geomorph.2012.08.021
  15. Yoo, Y.H., Choi, J.W., Choi, S.K., and Jung, S.H. (2016), Quality evaluation of orthoimage and DSM based on fixed-wing UAV corresponding to overlap and GCPs, Journal of the Korean Society for Geospatial Information Science, Vol. 24, No. 3, pp. 3-9. (in Korean with English abstract)