DOI QR코드

DOI QR Code

Antarctic DEMs Generation Using KOMPSAT-3A Stereo Images and Comparison by DEM Matching

KOMPSAT-3A 입체영상을 이용한 남극 DEM 제작과 DEM 매칭에 의한 두 시기의 DEM 비교

  • Lee, Hyoseong (Dept. of Civil Engineering, Sunchon National University) ;
  • Hwang, Hobin (Dept. of Civil Engineering, Sunchon National University) ;
  • Seo, Doochun (Satellite Data Cal/Val Dept., Korea Aerospace Research Institute) ;
  • Ahn, Kiweon (Dept. of Civil Engineering, Gyeongsang National University (Engineering Research Institute))
  • Received : 2017.05.16
  • Accepted : 2017.06.21
  • Published : 2017.06.30

Abstract

Antarctica, where ice sheet has been declined rapidly, should be monitored periodically. However, there are difficult to access for local survey or aircraft observation due to the vast and extreme environments of the polar regions. In order to overcome this problem, there have been a lot of studies by acquiring radar or laser data by satellite. It is also difficult to accurately measure the changes of the surface where is composed of snow or ice layer, and it is also difficult to product a high-resolution DEM. This study therefore aims to product DEMs of two periods using high-resolution KOMPSAT-3A stereo images, and DEM matching is implemented by the LZD(Least-squares Z-Differences) method to detect DEM changes in both periods. As a result, the proposed method could be suggested as comparing height differences of the two DEMs within 1m precision.

남극지역은 극빙 감소가 빠르게 진행되고 있기 때문에 주기적인 모니터링이 이루어져야 한다. 그러나 극지대의 광범위하고 극한 환경 때문에 접근이 어려워 항공기 또는 현지관측방식이 곤란한 경우가 많다. 이 문제를 해결하기 위해 기존에는 위성에 의한 레이다 또는 레이저 자료 획득에 의한 연구가 많이 진행되었다. 그러나 이들로부터 획득한 자료는 눈이나 얼음 층으로 이루어진 극지대 표면의 변화를 정확하게 측정하기 힘들고, 고해상도 DEM 구축 또한 힘들다는 단점이 있다. 따라서 본 연구는 고해상도 KOMPSAT-3A 스테레오 위성영상으로부터 두 시기의 DEM을 제작하고 두 시기의 DEM 변화파악을 위해 LZD 방법으로 DEM 매칭을 시도하였다. 그 결과, 정밀도 1m 이내에서 높이차 비교 가능성을 제시할 수 있었다.

Keywords

References

  1. Cavalieri D.J. and Parkinson, C.L. (2012), Arctic sea ice variability and trends, 1979-2010, The Cryosphere, Vol. 6, pp. 881-889. https://doi.org/10.5194/tc-6-881-2012
  2. Gruen, A. and Akca, D. (2005), Least squares 3D surface and curve matching, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 59, No. 3, pp. 151-174. https://doi.org/10.1016/j.isprsjprs.2005.02.006
  3. Han, D. (2007), Automatic Adjustment of Airborne LiDAR Strip Data Using the ICP and Extrema Detection Algorithm, Ph.D. dissertation, Seoul National University, Seoul, Korea, 107p. (in Korean with English abstract)
  4. Han, H. and Lee, H. (2011), Analysis of surface displacement of glaciers and sea ice around Canisteo Peninsula, west Antarctica, by using 4-pass DInSAR technique, Korean Journal of Remote Sensing, Vol. 27, No. 5, pp. 535-542. (in Korean with English abstract) https://doi.org/10.7780/kjrs.2011.27.5.535
  5. Kim, S.H and Kim, D.J., (2017), Combined usage of TanDEM-X and CryoSat-2 for generating a high resolution digital elevation model of fast moving ice stream and its application in grounding line estimation, Remote Sensing, Vol. 9, pp. 176-193. https://doi.org/10.3390/rs9020176
  6. Kim, S.I., Kim, H.C., Shin, J.I., and Hong, S.G. (2013), Landcover classification of Barton Peninsular around King Sejong station located in the Antarctic using KOMPSAT-2 satellite imagery, Korean Journal of Remote Sensing, Vol. 29, No. 5, pp. 537-544. (in Korean with English abstract) https://doi.org/10.7780/kjrs.2013.29.5.9
  7. Korona, J., Berthier, E., Bernarda, M., Rémy, F., and Thouvenot, E. (2009), SPIRIT. SPOT 5 stereoscopic survey of polar ice: reference images and topographies during the fourth international polar year (2007-2009), ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 64, pp. 204-212. https://doi.org/10.1016/j.isprsjprs.2008.10.005
  8. Kurtz, N.T. and Markus, T. (2008), Comparison of ICESat data with airborne laser altimeter measurements over Arctic sea ice, IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 7, pp. 1913-1924. https://doi.org/10.1109/TGRS.2008.916639
  9. Lee, C., Oh, J., Hong, C., and Youn, J. (2015), Automated generation of a digital elevation model over steep terrain in Antarctica from high-resolution satellite imagery, IEEE Transactions on Geoscience and Remote Sensing, Vol. 53, No. 3, pp. 1186-1194. https://doi.org/10.1109/TGRS.2014.2335773
  10. Lee, H. (2015), Accuracy improvement of the ICP DEM matching, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 5, pp. 443-451. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2015.33.5.443
  11. Lee, H., Seo, D., Ahn, K., and Jeong, D. (2013), Positioning accuracy analysis of KOMPSAT-3 satellite imagery by RPC adjustment, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 31, No. 6-1, pp. 503-509. (in Korean with English abstract) https://doi.org/10.7848/ksgpc.2013.31.6-1.503
  12. Rignot, E., Mouginot, J., and Scheuchl, B. (2011), Ice flow of the Antarctic ice sheet, SCIENCE, Vol. 333, No. 9, pp. 1427-1430. https://doi.org/10.1126/science.1208336
  13. Rosenholm, D. and Torlegard, K. (1988), Three-dimensional absolute orientation of stereo models using digital elevation models, Photogrammetric Engineering & Remote Sensing, Vol. 54, No. 10, pp. 1385-1389.
  14. Shuman, C.A., Zwally, H.J., Schutz, B.E., Brenner, A.C., DiMarzio, J.P., Suchdeo, V.P. and Fricker, H.A., (2006), ICESat Antarctic elevation data: preliminary precision and accuracy assessment, Geophysical Research Letters, Vol. 33, L07501, doi:10.1029/2005GL025227.

Cited by

  1. 해외 테스트베드 지역 아리랑 위성 3호 DSM 성능평가 vol.36, pp.6, 2017, https://doi.org/10.7780/kjrs.2020.36.6.2.11