DOI QR코드

DOI QR Code

Development of EST-SSRs and Assessment of Genetic Diversity in Little Millet (Panicum sumatrense) Germplasm

  • Ali, Asjad (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA) ;
  • Choi, Yu-Mi (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA) ;
  • Hyun, Do-Yoon (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA) ;
  • Lee, Sukyeung (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA) ;
  • Kim, Jin-Hee (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA) ;
  • Oh, Sejong (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA) ;
  • Lee, Myung Chul (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
  • Received : 2017.03.22
  • Accepted : 2017.05.04
  • Published : 2017.06.30

Abstract

Little millet (Panicum sumatrense) is well known for its salt and drought stress tolerance and high nutritional value, but very limited knowledge of genetic variation and genomic information is available. In this study, a total of 779 primer pairs were designed from the 22,961 EST sequences of switchgrass (Pancium virgatum), of which 48 EST-SSR markers were developed based on the trials of transferability of these primers in little millet. The EST-SSR amplicons showed reproducible single band polymorphism and produced a total of 160 alleles with an average of 3.3 alleles per locus in 37 accessions of little millet. The average values of expected and observed heterozygosities were 0.266 and 0.123, respectively. The polymorphic information content (PIC) values were observed in range of 0.026 to 0.549 with an average of 0.240. The genetic relatedness among the little millet accessions was evaluated by neighbor-joining dendrogram, which grouped all accessions into two distinct groups. The validation thus demonstrated the utility of the switchgrass EST-SSR markers in assessing genomic relationships in little millet. The findings from this study could be useful for designing strategies for the identification of diverse germplasm for conservation and future molecular breeding programs for little millet.

Keywords

References

  1. Ali, A., Y.M. Choi, D.Y. Hyun, S. Lee, S. Oh, H.J. Park, Y.H. Cho and M.C. Lee. 2016. EST-SSR based genetic diversity and population structure among Korean landraces of foxtail millet (Setaria italica). Korean J. Plant Res. 29(3):322-330. https://doi.org/10.7732/kjpr.2016.29.3.322
  2. Ajithkumar, I.P. and Panneerselvam. 2014. ROS scavenging system, osmotic maintenance, pigment and growth status of panicum sumatrense roth under drought stress. Cell Bio-Chem. Biophys. 68:587-595. https://doi.org/10.1007/s12013-013-9746-x
  3. Biswas, M.K., Q. Xu, C. Mayer and X. Deng. 2014. Genome wide characterization of short tandem repeat markers in sweet orange (Citrus sinensis). PloS One. 9:e104182. Doi: 10.1371/journal.pone.0104182.
  4. Beck, E.H., S. Fettig, C. Knake, K. Hartig and T. Bhattarai. 2007. Specific and unspecific responses of plants to cold and drought stress. J. Biosci. 32:501-510. https://doi.org/10.1007/s12038-007-0049-5
  5. Bhaskaran, J. and R. Panneerselvam. 2013. Accelerated reactive oxygen scavenging system and membrane integrity of two panicum species varying in salt tolerance. Cell BioChem. Biophys. 67:885-892. https://doi.org/10.1007/s12013-013-9576-x
  6. Burrows, C., N. Abd Latip, S.J. Lam, L. Carpenter, K. Sawicka, G. Tzolovsky, H. Gabra, M. Bushell, D.M. Glover, A.E. Willis and S.P. Blagden. 2010. The RNA binding protein Larp1 regulates cell division, apoptosis and cell migration. Nucleic Acids Res. 38:5542-5553. https://doi.org/10.1093/nar/gkq294
  7. Casler, M.D. 2012. Switchgrass breeding, genetics and genomics. In Monti, A. (ed.), Switchgrass, Green Energy and Technology, Springer London, UK. pp. 29-53.
  8. Cho, Y.I, J.W. Chung, G.A. Lee, K.H. Ma, A. Dixit, J.G. Gwag and Y.J. Park. 2010. Development and characterization of twenty-five new polymorphic microsatellite markers in proso millet (Panicum miliaceum L.). Genes Genom. 32: 267-273. https://doi.org/10.1007/s13258-010-0007-8
  9. Cordeiro, G.M., R. Casu, C.L. McIntyre, J.M. Manners and R.J. Henry. 2001. Microsatellite markers from sugarcane (Saccharum spp) EST cross transferable to erianthus and sorghum. Plant Sci. 160:1115-1123. https://doi.org/10.1016/S0168-9452(01)00365-X
  10. De Wet, J.M.J., K.E. Prasada Rao and D.E. Brink. 1983. Systematics and domestication of Panicum sumatrense (Graminae). J. d'agriculture Tradit. Bot. appliquee. 30:159-168. https://doi.org/10.3406/jatba.1983.3898
  11. Da Maia, L.C., D.A. Palmieri, V.Q. de Souza, M.M. Kopp, F.I.F. de Carvalho and A.C. de Oliveira. 2008. SSR locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int. J. Plant Genom. Doi: 10.1155/2008/412696.
  12. Goron, T.L. and M.N. Raizada. 2015. Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution improvement. Front. Plant Sci. Doi:10.3389/fpls.2015.00157.
  13. Govindaraj, M., M. Vetriventhan and M. Srinivasan. 2015. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its Analytical perspectives. Genet. Res. Int. Doi.org/10.1155/2015/431487.
  14. Gupta, S.K. Kumari, P.P. Sahu, S. Vidapu and M. Prasad. 2012. Sequence-based novel genomic microsatellite markers for robust genotyping purposes in foxtail millet [Setaria italica L. Beauv]. Plant Cell Rep. 31:323-337. https://doi.org/10.1007/s00299-011-1168-x
  15. Hiremath, S.C., G.N.V. Patil and S.S. Salimath. 1990. Genome homology and origin of Panicum sumatrense (Gramineae). Cytologia 55:315-319. Doi:10.1508/cytologia.55.315.
  16. Im, C.H., K.H. Kim, H.J. Je, A. Ali, M.K. Kim, W.K. Joung, S.D. Lee, H.Y. Shin and J.S. Ryu. 2014. Multiplex simple sequence repeat (SSR) markers discriminating Pleurotus eryngii cultivar. Korean J. Mycol. 42(2):159-164. https://doi.org/10.4489/KJM.2014.42.2.159
  17. Jia, X.P., Y.S. Shi, Y.C. Song, G.Y. Wang, T.Y. Wang and Y. Li. 2007. Development of EST-SSR in foxtail millet (Setaria italica). Genet. Resour. Crop Ev. 54:233-236. https://doi.org/10.1007/s10722-006-9139-8
  18. Jia, X.P., Z. Zhang, Y. Liu, C. Zhang, Y. Shi, Y. Song, T. Wang and Y. Li. 2009. Development and genetic mapping of SSR markers in foxtail millet [Setaria italica L. Beauv]. Theor. Appl. Genet. 118:821-829. https://doi.org/10.1007/s00122-008-0942-9
  19. Kantety, R.V., M. La Rota, D.E. Matthews and M.E. Sorrells. 2002. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol. Biol. 48:501-510. Doi: 10.1023/A:1014875206165.
  20. Lin, H.S., G.I. Liao, C.Y. Chian, C.S. Kuoh and S.B. Chang. 2012. Genetic diversity in the foxtail millet (Setaria italica) germplasm as determined by agronomic traits and microsatellite markers. Aus. J. crop Sci. 6(2):342-349.
  21. Liu, K. and M. Muse. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128-2129. https://doi.org/10.1093/bioinformatics/bti282
  22. McGaughey, S.A., H.L. Osborn, L. Chen, J.L. Pegler, S.D. Tyerman, R.T. Furbank, C.S. Byrt and C.P.L. Grof. 2016. Roles of aquaporins in Setaria viridis stem development and sugar storage. Front. Plant Sci. 7:1815. Doi:10.3389/fpls.2016.01815.
  23. Nicot, N., V. Chiquet, B. Gandon, L. Amilhat, F. Legeai, P Leroy, M. Bernar and P. Sourdille. 2004. Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs). Theor. Appl. Genet. 109(4):800-805. https://doi.org/10.1007/s00122-004-1685-x
  24. MSSR. 1999. Ninth annual report: 1998-99 M.S. Swaminathan Research Foundation, Chennai.
  25. Pandey, G., G. Misra, K. Kumari, S. Gupta, S.K. Parida, D. Chattopadhyay and M. Prasad. 2013. Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)]. DNA Res. 20:197-207. https://doi.org/10.1093/dnares/dst002
  26. Peakall, R.O.D. and Smouse, P.E. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6(1):288-295. https://doi.org/10.1111/j.1471-8286.2005.01155.x
  27. Perrier, X. and J.P. Jacquemoud-Collet. 2006. Darwin software, http://darwin.cirad.fr/darwin
  28. Pradeep, S.R. and M. Guha. 2011. Effect of processing methods on the nutraceutical and antioxidant properties of little millet (Panicum sumatrense) extracts. Food Chem. 126:1643-1647. https://doi.org/10.1016/j.foodchem.2010.12.047
  29. Rauscher, G. and I. Simko. 2013. Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes. BMC Plant Biol. 13:11. Doi: 10.1186/1471-2229-13-11.
  30. Seo, D.H., K.M. Jung, S.J. Kim and K.M. Kim. 2013. Development of EST-SSR markers and analysis of genetic diversity using persimmon (Diospyros kaki Thunb) cultivars collecting from domestic. Korean J. Plant Res. 26(4):491-502 (in Korean). https://doi.org/10.7732/kjpr.2013.26.4.491
  31. Wang, Y.W., T.D. Samuels and Y.Q. Wu. 2011. Development of 1,030 Genomic SSR Markers in Switchgrass. Theor. Appl. Genet. 122(4):677-686. https://doi.org/10.1007/s00122-010-1477-4
  32. Wang, M.L., N.A. Barkley, J.K. Yu, R.E. Dean, M.L. Newman, M.E. Sorrells and G.A. Pederson. 2005. Transfer of simple sequence repeat (SSR) markers from major cereal crops to minor grass species for germplasm characterization and evaluation. Plant Genet. Resour. 3(1):45-57. https://doi.org/10.1079/PGR200461

Cited by

  1. Discrimination of Floral Scents and Metabolites in Cut Flowers of Peony (Paeonia lactiflora Pall.) Cultivars vol.31, pp.6, 2017, https://doi.org/10.7732/kjpr.2018.31.6.641
  2. Assessment of Genetic Diversity and Population Structure on Kenyan Sunflower (Helianthus annus L.) Breeding Lines by SSR Markers vol.32, pp.3, 2017, https://doi.org/10.7732/kjpr.2019.32.3.244