DOI QR코드

DOI QR Code

Application of Landsat TM/ETM+ Images to Snow Variations Detection by Volcanic Activities at Southern Volcanic Zone, Chile

Landsat TM/ETM+ 위성영상을 활용한 칠레 Southern Volcanic Zone의 화산과 적설변화와의 상관성 연구

  • 김정철 (서울시립대학교 공간정보공학과) ;
  • 정형섭 (서울시립대학교 공간정보공학과)
  • Received : 2017.05.06
  • Accepted : 2017.06.19
  • Published : 2017.06.30

Abstract

The Southern Volcanic Zone (SVZ) of Chile consists of many volcanoes, including the Mt.Villarrica and Mt.Llaima, and the two volcanoes are covered with snow at the top of Mountain. The purpose of this study is to analyze the relationship between the ice caps and the volcanic activity of the two volcanoes for 25 years by using the satellite image data are available in a time series. A total of 60 Landsat-5 TM and Landsat-7 ETM + data were used for the study from September 1986 to February 2011. Using NDSI (Normalized Difference Snow Index) algorithm and SRTM DEM, snow cover and snowline were extracted. Finally, the snow cover area, lower-snowline, and upper-snowline, which are quantitative indicators of snow cover change, were directly or indirectly affected by volcanic activity, were extracted from the satellite images. The results show that the volcanic activity of Villarrica volcano is more than 55% when the snow cover is less than 20 and the lower-snowline is 1,880 m in Llaima volcano. In addition, when the upper-snowline of the two volcanoes is below -170m, it can be confirmed that the volcano is differentiated with a probability of about 90%. Therefore, the changes in volcanic snowfall are closely correlated with volcanic activity, and it is possible to indirectly deduce volcanic activity by monitoring the snow.

칠레에 위치한 남부화산지역(SVZ, Southern Volcanic Zone)에는 화산활동이 매우 활발한 Mt. Villarrica와 Mt. Llaima 화산 있으며, 두 화산은Stratovolcano 형태이고 정상부에 만년설이 존재한다는 공통점이 있다. 본 연구에서는 시계열적으로 활용 가능한 위성영상자료를 활용하여 25년간 두 화산의 만년설의 변화와 화산활동과의 상관관계를 분석하고자 한다. 연구를 위해, 1986년 9월부터 2011년 2월까지 총 60장의 Landsat-5 TM 및 Landsat-7 ETM+자료를 사용하였으며, 위성영상 기반의 NDSI(Normalized Difference Snow Index) 알고리즘과 SRTM DEM을 활용하여 각 영상의 적설 면적 및 설선고도를 추출하였다. 최종적으로 화산활동에 직 간접적으로 영향을 받는 적설변화양상의 정량적 지표가 되는 적설면적, lower-snowline, upper-snowline을 위성영상으로부터 추출하여 각각의 비교 분석을 통해 화산활동 유추 가능성을 확인하였다. 분석 결과, Villarrica화산은 Llaima 화산에서 적설면적이 20 이하일 때, lower-snowline이 1,880m을 이상일 때 55%이상의 확률로 화산 활동이 있었음을 확인 가능하였다. 또한 두 화산의 upper-snowline이 -170m 이하 일 때, 90% 이상의 확률로 화산이 분화하였음을 확인 할 수 있다. 따라서 화산의 적설 변화는 화산활동과 밀접한 상관성이 있으며, 적설을 모니터링하는 것으로 화산활동을 간접적으로 유추하는 것이 가능하다는 것을 밝혀내었다.

Keywords

References

  1. Bown, F. and A. Rivera, 2007. Climate changes and recent glacier behaviour in the Chilean Lake District, Global and Planetary Change, 59(1): 79-86. https://doi.org/10.1016/j.gloplacha.2006.11.015
  2. Bredemeyer, S. and T.H. Hansteen, 2014. Synchronous degassing patterns of the neighbouring volcanoes Llaima and Villarrica in south-central Chile: the influence of tidal forces, International Journal of Earth Sciences, 103(7): 1999-2012. https://doi.org/10.1007/s00531-014-1029-2
  3. Camiz, S., M. Poscolieri, and M. Roverato, 2017. Geomorphometric comparative analysis of Latin-American volcanoes, Journal of South American Earth Sciences, 76: 47-62. https://doi.org/10.1016/j.jsames.2017.02.011
  4. Castruccio, A., J. Clavero, and A. Rivera, 2010. Comparative study of lahars generated by the 1961 and 1971 eruptions of Calbuco and Villarrica volcanoes, Southern Andes of Chile, Journal of Volcanology and Geothermal Research, 190(3): 297-311. https://doi.org/10.1016/j.jvolgeores.2009.12.005
  5. Castruccio, A. and M.A. Contreras, 2016. The influence of effusion rate and rheology on lava flow dynamics and morphology: a case study from the 1971 and 1988-1990 eruptions at Villarrica and Lonquimay volcanoes, Southern Andes of Chile, Journal of Volcanology and Geothermal Research, 327: 469-483. https://doi.org/10.1016/j.jvolgeores.2016.09.015
  6. Cembrano, J. and L. Lara, 2009. The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review, Tectonophysics, 471(1): 96-113. https://doi.org/10.1016/j.tecto.2009.02.038
  7. Chavez, P.S., 1996. Image-based atmospheric corrections-revisited and improved, Photogrammetric Engineering and Remote Sensing, 62(9): 1025-1035.
  8. Cigolini, C., M. Laiolo, D. Coppola, and G. Ulivieri, 2013. Preliminary radon measurements at Villarrica volcano, Chile, Journal of South American Earth Sciences, 46: 1-8. https://doi.org/10.1016/j.jsames.2013.04.003
  9. Crawford, C.J., S.M. Manson, M.E. Bauer, and D.K. Hall, 2013. Multitemporal snow cover mapping in mountainous terrain for Landsat climate data record development, Remote Sensing of Environment, 135: 224-233. https://doi.org/10.1016/j.rse.2013.04.004
  10. Dzierma, Y. and H. Wehrmann, 2010. Eruption time series statistically examined: Probabilities of future eruptions at Villarrica and Llaima Volcanoes, Southern Volcanic Zone, Chile, Journal of Volcanology and Geothermal Research, 193(1): 82-92. https://doi.org/10.1016/j.jvolgeores.2010.03.009
  11. Ha, J.-M., K.-S., Han, I.-H., Kim, and K.-J., Pi, 2012. Variability of Snow Cover over Himalaya Using MODIS Snow Cover Data, Journal of Climate Research, 7(3): 226-240 (in Korean with English abstract).
  12. Hall, D.K., G.A. Riggs, and V.V. Salomonson, 1995. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data, Remote Sensing of Environment, 54(2): 127-140. https://doi.org/10.1016/0034-4257(95)00137-P
  13. Han, K.-S. and Y.-S., Kim, 2004. SPOT/VEGETATIONbased Algorithm for the Discrimination of Cloud and Snow, Korean Journal of Remote Sensing, 20(4): 235-244 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2004.20.4.235
  14. Hickey-Vargas, R., M. Sun, and S. Holbik, 2016. Geochemistry of basalts from small eruptive centers near Villarrica stratovolcano, Chile: Evidence for lithospheric mantle components in continental arc magmas, Geochimica et Cosmochimica Acta, 185: 358-382. https://doi.org/10.1016/j.gca.2016.03.033
  15. Jo, M.-J., H.-S. Jung, and J.-S. Won, 2017. Measurement of precise three- dimensional volcanic deformations via TerraSAR-X synthetic aperture radar interferometry, Remote Sensing of Environment, 192: 228-237. https://doi.org/10.1016/j.rse.2017.02.022
  16. Kim, J.-C., D.-H. Kim, S.-H. Park, H.-S. Jung, and H.-S. Shin, 2014. Application of Landsat images to Snow Cover Changes by Volcanic Activities at Mt. Villarica and Mt. Lliama, Chile, Korean Journal of Remote Sensing, 30(3): 341-350. https://doi.org/10.7780/kjrs.2014.30.3.1
  17. Kim, J.-C, 2016. Feasibility Study on Volcanic Activity Indicator Using Snow Cover Variations Extracted from LANDSAT Images, University of Seoul, Seoul, Korea.
  18. Maisonneuve, C.B.D., M. Dungan, O. Bachmann, and A. Burgisser, 2012. Insights into shallow magma storage and crystallization at Volcan Llaima (Andean Southern Volcanic Zone, Chile), Journal of Volcanology and Geothermal Research, 211: 76-91.
  19. Mora-Stock, C., M. Thorwart, T. Wunderlich, S. Bredemeyer, T.H. Hansteen, and W. Rabbel, 2014. Comparison of seismic activity for Llaima and Villarrica volcanoes prior to and after the Maule 2010 earthquake, International Journal of Earth Sciences, 103(7): 2015-2028. https://doi.org/10.1007/s00531-012-0840-x
  20. Ortiz, R., H. Moreno, A. Garci, G. Fuentealba, M. Astiz, P. Pena, N. Sanchez, and M. Tarraga, 2003. Villarrica volcano (Chile): characteristics of the volcanic tremor and forecasting of small explosions by means of a material failure method, Journal of Volcanology and Geothermal Research, 128(1): 247-259. https://doi.org/10.1016/S0377-0273(03)00258-0
  21. Park, S.-H., M.-J. Lee, and H.-S. Jung, 2012. Analysis on the snow cover variations at Mt. Kilimanjaro using Landsat satellite images, Korean Journal of Remote Sensing, 28(4): 409-420 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2012.28.4.5
  22. Park, S.-H., M.-J. Lee, and H.-S. Jung, 2016. Spatiotemporal analysis of snow cover variations at Mt. Kilimanjaro using multi-temporal Landsat images during 27 years, Journal of Atmospheric and Solar-Terrestrial Physics, 143: 37-46.
  23. Rivera, A. and F. Bown, 2013. Recent glacier variations on active ice capped volcanoes in the Southern Volcanic Zone ($37^{\circ}-46^{\circ}$S), Chilean Andes, Journal of South American Earth Sciences, 45: 345-356. https://doi.org/10.1016/j.jsames.2013.02.004
  24. Rivera, A., F. Bown, R. Mella, J. Wendt, G. Casassa, C. Acuna, E. Rignot, J. Clavero, and B. Brock, 2006. Ice volumetric changes on active volcanoes in southern Chile, Annals of Glaciology, 43(1): 111-122. https://doi.org/10.3189/172756406781811970
  25. Rivera, A., J.G. Corripio, B. Brock, J. Clavero, and J. Wendt, 2008. Monitoring ice-capped active Volcan Villarrica, southern Chile, using terrestrial photography combined with automatic weather stations and global positioning systems, Journal of Glaciology, 54(188): 920-930. https://doi.org/10.3189/002214308787780076
  26. Wehrmann, H. and Y. Dzierma, 2011. Applicability of statistical eruption analysis to the geological record of Villarrica and Lanin volcanoes, Southern Volcanic Zone, Chile, Journal of Volcanology and Geothermal Research , 200(3): 99-115. https://doi.org/10.1016/j.jvolgeores.2010.11.009

Cited by

  1. 지진·화산 연구에 대한 위성영상 활용 vol.34, pp.6, 2018, https://doi.org/10.7780/kjrs.2018.34.6.4.1