DOI QR코드

DOI QR Code

Microstructure and Wear Characteristics of TiC-SKD11 Composite Fabricated by Liquid Pressing Infiltration Process

용융가압함침 공정으로 제조한 TiC-SKD11 복합재료의 미세조직 및 내마모 특성

  • Cho, Seungchan (Composites Research Division, Korea Institute of Materials Science) ;
  • Jo, Ilguk (Composites Research Division, Korea Institute of Materials Science) ;
  • Lee, Sang-Kwan (Composites Research Division, Korea Institute of Materials Science) ;
  • Lee, Sang-Bok (Composites Research Division, Korea Institute of Materials Science)
  • Received : 2017.03.27
  • Accepted : 2017.06.26
  • Published : 2017.06.30

Abstract

Titanium carbide (TiC) reinforced SKD11 matrix composites were successfully fabricated by a novel liquid pressing infiltration process. Microstructure, mechanical properties, and wear characteristics of the fabricated 60 vol% TiC-SKD11 composite are analyzed. The composite exhibits superior mechanical properties, such as hardness and compressive strength with 24% lower density as compared with SKD11. Improved wear resistance of the TiC-SKD11 composite originates from uniformly reinforced TiC having strong interfacial bonding strength between TiC/SKD11 interface.

본 연구에서는 용융가압함침 공정을 통해 고체적율의 TiC 입자가 균일 분산된 SKD11 금속복합재료를 제조하고, 미제조직, 기계적 특성 및 내마모 특성에 대해 분석하였다. 약 60 vol%의 TiC가 균일하게 분산된 TiC-SKD11 복합재료를 제조함으로써 SKD11 대비 약 24% 경량화에 성공하였고 경도 및 압축항복강도는 증가하였다. 내마모 시험 결과 복합소재의 우수한 내마모 특성을 확인하였으며, 이는 높은 경도를 가지는 TiC 입자가 SKD11 기지와 강한 계면 결합력을 가지면서 높은 체적율로 존재함으로 인한 분산강화 효과와 TiC에 의한 SKD11의 산화 억제가 원인으로 판단된다.

Keywords

References

  1. Moon, J.-S., Jung, S.-S., Lee, D.-Y., Jeong, Y.-K., Kang, M.C., Park, C.-D., and Youn, K.-T., "Powder Sintering Characteristics of Carbon Nanotubes Reinforced SKD11 Tool Steel Sintered by Spark Plasma Sintering", Journal of Korean Powder Metallurgy Institute, Vol. 22, No. 3, 2015, pp. 157-162. https://doi.org/10.4150/KPMI.2015.22.3.157
  2. Qi, Q., Liu, Y., and Huang, Z., "Promising Metal Matrix Composites (TiC/Ni-Cr) for Intermediate-temperature Solid Oxide Fuel Cell (SOFC) Interconnect Applications", Scripta Materialia, Vol. 109, 2015, pp. 56-60. https://doi.org/10.1016/j.scriptamat.2015.07.017
  3. Oh, N.R., Lee, S.K., Hwang, K.C., and Hong, H.U., "Characterization of Microstructure and Tensile Fracture Behavior in a Novel Infiltrated TiC-steel Composite," Scripta Materialia, Vol. 112, 2016, pp. 123-127. https://doi.org/10.1016/j.scriptamat.2015.09.028
  4. Oh, N.-R., Lee, S.-K., Cho S.-C., Jo, I.-G., Hwang, K.-C., Kim, D.-H., Cho, Y.-T., Sur, D.-W., and Hong, H.U., "Temperature Dependency of the Tensile Characteristics and Transition of Fracture Behaviors in a Novel Infiltrated TiC-SKD11 Composites", Korean Journal of Metals and Materials, Vol. 55, No. 3, 2017, pp. 156-164.
  5. Cho, S., Jo, I., Kim, H., Kwon, H.-T., Lee, S.-K., and Lee, S.-B., "Effect of TiC Addition on Surface Oxidation Behavior of SKD11 Tool Steel Composites", Applied Surface Science, Vol. 415, 2017, pp. 155-160. https://doi.org/10.1016/j.apsusc.2016.11.164
  6. Jam, A., Nikzad, L., and Razavi, M., "TiC-based Cermet Prepared by High-energy Ball-milling and Reactive Spark Plasma Sintering", Ceramics International, Vol. 43, No. 2, 2017, pp. 2448-2455. https://doi.org/10.1016/j.ceramint.2016.11.039
  7. Lee, Y.-H., Huynh, X.-K., and Kim, J.S., "Spark Plasma Sintering of Fe-TiC Composite Powders", Journal of Korean Powder Metallurgy Institute, Vol. 21, No. 5, 2014, pp. 382-388. https://doi.org/10.4150/KPMI.2014.21.5.382
  8. Wang, Z., Lin, T., He, X., Shao, H., Zheng, J., and Qu, X., "Microstructure and Properties of TiC-high Manganese Steel Cermet Prepared by Different Sintering Processes", Journal of Alloys and Compounds, Vol. 650, No. 25, 2015, pp. 918-924. https://doi.org/10.1016/j.jallcom.2015.08.047
  9. Kim, Y.-I., An, G.S., Lee, W., Jang, J.M., Park, B.-G., Jung, Y.-G., Choi, S.-C., and Ko, S.-H., "In-situ fabrication of TiC-Fe3Al cermet", Ceramics International, Vol. 43, No. 8, 2017, pp. 5907-5913. https://doi.org/10.1016/j.ceramint.2017.01.078
  10. Wang, Z., Lin, T., He, X., Shao, H., Zheng, J., and Qu, X., "Microstructure and Properties of TiC-high Manganese Steel Cermet Prepared by Different Sintering Processes", Journal of Alloys and Compounds, Vol. 650, No. 25, 2015, pp. 918-924. https://doi.org/10.1016/j.jallcom.2015.08.047
  11. Kwon, H., Jung, S.-A., Suh, C.-Y., Roh, K.-M., and Kim, W., "Mechanical Properties of (Ti,V)C-Ni Composite Prepared Using Ultrafine Solid-solution (Ti,V)C Phase", Ceramic International, Vol. 40 , 2014, pp. 12579-12583. https://doi.org/10.1016/j.ceramint.2014.04.064
  12. Jung, J., and Kang, S., "Sintered (Ti,W)C Carbides", Scripta Materialia, Vol. 56, 2007, pp. 561-564. https://doi.org/10.1016/j.scriptamat.2006.12.026
  13. Park, S.H., and Kang, S.H., "Toughened Ultrafine (Ti,W)(CN)- Ni Cermets", Scripta Materialia, Vol. 52, 2005, pp. 129-133. https://doi.org/10.1016/j.scriptamat.2004.09.017
  14. Wu, Q.L., Zhang, J.Q., and Sun, Y.S., "Oxidation Behaviour of TiC Particle-reinforced 304 Stainless Steel", Corrosion Science, Vol. 52, 2010, pp. 1003-1010. https://doi.org/10.1016/j.corsci.2009.11.025