DOI QR코드

DOI QR Code

Improved accuracy in periodontal pocket depth measurement using optical coherence tomography

  • Kim, Sul-Hee (Department of Periodontology, Seoul National University School of Dentistry) ;
  • Kang, Se-Ryong (Department of Biomedical Radiation Sciences, Seoul National University Graduate School of Convergence Science and Technology) ;
  • Park, Hee-Jung (Department of Periodontology, Seoul National University School of Dentistry) ;
  • Kim, Jun-Min (Dental Research Institute, Seoul National University School of Dentistry) ;
  • Yi, Won-Jin (Dental Research Institute, Seoul National University School of Dentistry) ;
  • Kim, Tae-Il (Department of Periodontology, Seoul National University School of Dentistry)
  • Received : 2016.11.20
  • Accepted : 2017.01.18
  • Published : 2017.02.28

Abstract

Purpose: The purpose of this study was to examine whether periodontal pocket could be satisfactorily visualized by optical coherence tomography (OCT) and to suggest quantitative methods for measuring periodontal pocket depth. Methods: We acquired OCT images of periodontal pockets in a porcine model and determined the actual axial resolution for measuring the exact periodontal pocket depth using a calibration method. Quantitative measurements of periodontal pockets were performed by real axial resolution and compared with the results from manual periodontal probing. Results: The average periodontal pocket depth measured by OCT was $3.10{\pm}0.15mm$, $4.11{\pm}0.17mm$, $5.09{\pm}0.17mm$, and $6.05{\pm}0.21mm$ for each periodontal pocket model, respectively. These values were similar to those obtained by manual periodontal probing. Conclusions: OCT was able to visualize periodontal pockets and show attachment loss. By calculating the calibration factor to determine the accurate axial resolution, quantitative standards for measuring periodontal pocket depth can be established regardless of the position of periodontal pocket in the OCT image.

Keywords

References

  1. Mota CC, Fernandes LO, Cimoes R, Gomes AS. Non-invasive periodontal probing through fourier-domain optical coherence tomography. J Periodontol 2015;86:1087-94. https://doi.org/10.1902/jop.2015.150047
  2. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science 1991;254:1178-81. https://doi.org/10.1126/science.1957169
  3. Adhi M, Duker JS. Optical coherence tomography--current and future applications. Curr Opin Ophthalmol 2013;24:213-21. https://doi.org/10.1097/ICU.0b013e32835f8bf8
  4. Sattler E, Kastle R, Welzel J. Optical coherence tomography in dermatology. J Biomed Opt 2013;18:061224. https://doi.org/10.1117/1.JBO.18.6.061224
  5. Kirtane TS, Wagh MS. Endoscopic optical coherence tomography (OCT): advances in gastrointestinal imaging. Gastroenterol Res Pract 2014;2014:376367.
  6. Ferrante G, Presbitero P, Whitbourn R, Barlis P. Current applications of optical coherence tomography for coronary intervention. Int J Cardiol 2013;165:7-16. https://doi.org/10.1016/j.ijcard.2012.02.013
  7. Cheng HM, Guitera P. Systematic review of optical coherence tomography usage in the diagnosis and management of basal cell carcinoma. Br J Dermatol 2015;173:1371-80. https://doi.org/10.1111/bjd.14042
  8. Colston BW Jr, Everett MJ, Da Silva LB, Otis LL, Stroeve P, Nathel H. Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography. Appl Opt 1998;37:3582-5. https://doi.org/10.1364/AO.37.003582
  9. Feldchtein F, Gelikonov V, Iksanov R, Gelikonov G, Kuranov R, Sergeev A, et al. In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express 1998;3:239-50. https://doi.org/10.1364/OE.3.000239
  10. Imai K, Shimada Y, Sadr A, Sumi Y, Tagami J. Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro. J Endod 2012;38:1269-74. https://doi.org/10.1016/j.joen.2012.05.008
  11. Ishibashi K, Ozawa N, Tagami J, Sumi Y. Swept-source optical coherence tomography as a new tool to evaluate defects of resin-based composite restorations. J Dent 2011;39:543-8. https://doi.org/10.1016/j.jdent.2011.05.005
  12. Shimada Y, Sadr A, Burrow MF, Tagami J, Ozawa N, Sumi Y. Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries. J Dent 2010;38:655-65. https://doi.org/10.1016/j.jdent.2010.05.004
  13. Di Stasio D, Lauritano D, Romano A, Salerno C, Minervini G, Minervini G, et al. In vivo characterization of oral pemphigus vulgaris by optical coherence tomography. J Biol Regul Homeost Agents 2015;29:39-41.
  14. Tsai MT, Lee CK, Lee HC, Chen HM, Chiang CP, Wang YM, et al. Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography. J Biomed Opt 2009;14:044028. https://doi.org/10.1117/1.3200936
  15. Hsieh YS, Ho YC, Lee SY, Lu CW, Jiang CP, Chuang CC, et al. Subgingival calculus imaging based on swept-source optical coherence tomography. J Biomed Opt 2011;16:071409. https://doi.org/10.1117/1.3602851
  16. Kao MC, Lin CL, Kung CY, Huang YF, Kuo WC. Miniature endoscopic optical coherence tomography for calculus detection. Appl Opt 2015;54:7419-23. https://doi.org/10.1364/AO.54.007419
  17. Baek JH, Na J, Lee BH, Choi E, Son WS. Optical approach to the periodontal ligament under orthodontic tooth movement: a preliminary study with optical coherence tomography. Am J Orthod Dentofacial Orthop 2009;135:252-9. https://doi.org/10.1016/j.ajodo.2007.10.037
  18. Fernandes LO, Mota CC, de Melo LS, da Costa Soares MU, da Silva Feitosa D, Gomes AS. In vivo assessment of periodontal structures and measurement of gingival sulcus with optical coherence tomography: a pilot study. J Biophotonics. Forthcoming 2016.
  19. Agrawal P, Sanikop S, Patil S. New developments in tools for periodontal diagnosis. Int Dent J 2012;62:57-64. https://doi.org/10.1111/j.1875-595X.2011.00099.x
  20. Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 2003;21:1361-7. https://doi.org/10.1038/nbt892
  21. Armitage GC. Clinical evaluation of periodontal diseases. Periodontol 2000 1995;7:39-53. https://doi.org/10.1111/j.1600-0757.1995.tb00035.x
  22. Savage A, Eaton KA, Moles DR, Needleman I. A systematic review of definitions of periodontitis and methods that have been used to identify this disease. J Clin Periodontol 2009;36:458-67. https://doi.org/10.1111/j.1600-051X.2009.01408.x
  23. Xiang X, Sowa MG, Iacopino AM, Maev RG, Hewko MD, Man A, et al. An update on novel non-invasive approaches for periodontal diagnosis. J Periodontol 2010;81:186-98. https://doi.org/10.1902/jop.2009.090419
  24. Kao RT, Pasquinelli K. Thick vs. thin gingival tissue: a key determinant in tissue response to disease and restorative treatment. J Calif Dent Assoc 2002;30:521-6.
  25. Thoma DS, Muhlemann S, Jung RE. Critical soft-tissue dimensions with dental implants and treatment concepts. Periodontol 2000 2014;66:106-18. https://doi.org/10.1111/prd.12045
  26. Lee A, Fu JH, Wang HL. Soft tissue biotype affects implant success. Implant Dent 2011;20:e38-47. https://doi.org/10.1097/ID.0b013e3182181d3d
  27. Grossi SG, Dunford RG, Ho A, Koch G, Machtei EE, Genco RJ. Sources of error for periodontal probing measurements. J Periodontal Res 1996;31:330-6. https://doi.org/10.1111/j.1600-0765.1996.tb00500.x
  28. van der Velden U, de Vries JH. The influence of probing force on the reproducibility of pocket depth measurements. J Clin Periodontol 1980;7:414-20. https://doi.org/10.1111/j.1600-051X.1980.tb02014.x
  29. Badersten A, Nilveus R, Egelberg J. Reproducibility of probing attachment level measurements. J Clin Periodontol 1984;11:475-85. https://doi.org/10.1111/j.1600-051X.1984.tb01347.x
  30. Watts TL. Probing site configuration in patients with untreated periodontitis. A study of horizontal positional error. J Clin Periodontol 1989;16:529-33. https://doi.org/10.1111/j.1600-051X.1989.tb02331.x
  31. Hsieh YS, Ho YC, Lee SY, Chuang CC, Tsai JC, Lin KF, et al. Dental optical coherence tomography. Sensors (Basel) 2013;13:8928-49. https://doi.org/10.3390/s130708928
  32. Goodson JM, Haffajee AD, Socransky SS. The relationship between attachment level loss and alveolar bone loss. J Clin Periodontol 1984;11:348-59. https://doi.org/10.1111/j.1600-051X.1984.tb01331.x

Cited by

  1. The Use of Optical Coherence Tomography in Dental Diagnostics: A State-of-the-Art Review vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/7560645
  2. Evaluation of adaptation of ceramic inlays using optical coherence tomography and replica technique vol.32, pp.None, 2017, https://doi.org/10.1590/1807-3107bor-2018.vol32.0005
  3. Quantitative measurement of peri-implant bone defects using optical coherence tomography vol.48, pp.2, 2017, https://doi.org/10.5051/jpis.2018.48.2.84
  4. Microbiota and Metatranscriptome Changes Accompanying the Onset of Gingivitis vol.9, pp.2, 2017, https://doi.org/10.1128/mbio.00575-18
  5. Optical coherence tomography follow-up of patients treated from periodontal disease vol.12, pp.2, 2017, https://doi.org/10.1002/jbio.201800209
  6. Chlamydia trachomatis in the gingival sulcus and pharynx in patients of Northeast Mexico vol.6, pp.4, 2017, https://doi.org/10.1002/cre2.290
  7. Evaluation Through the Optical Coherence Tomography Analysis of the Influence of Non-Alcoholic Fatty Liver Disease on the Gingival Inflammation in Periodontal Patients vol.14, pp.None, 2017, https://doi.org/10.2147/dmso.s310314
  8. Potential Imaging Capability of Optical Coherence Tomography as Dental Optical Probe: A Mini-Review vol.11, pp.22, 2021, https://doi.org/10.3390/app112211025