DOI QR코드

DOI QR Code

Water Level Forecasting based on Deep Learning: A Use Case of Trinity River-Texas-The United States

딥러닝 기반 침수 수위 예측: 미국 텍사스 트리니티강 사례연구

  • 트란 광 카이 (과학기술연합대학원대학교 빅데이터과학과, 한국과학기술정보연구원 의사결정지원기술연구실) ;
  • 송사광 (과학기술연합대학원대학교 빅데이터과학과, 한국과학기술정보연구원 의사결정지원기술연구실)
  • Received : 2017.01.18
  • Accepted : 2017.03.21
  • Published : 2017.06.15

Abstract

This paper presents an attempt to apply Deep Learning technology to solve the problem of forecasting floods in urban areas. We employ Recurrent Neural Networks (RNNs), which are suitable for analyzing time series data, to learn observed data of river water and to predict the water level. To test the model, we use water observation data of a station in the Trinity river, Texas, the U.S., with data from 2013 to 2015 for training and data in 2016 for testing. Input of the neural networks is a 16-record-length sequence of 15-minute-interval time-series data, and output is the predicted value of the water level at the next 30 minutes and 60 minutes. In the experiment, we compare three Deep Learning models including standard RNN, RNN trained with Back Propagation Through Time (RNN-BPTT), and Long Short-Term Memory (LSTM). The prediction quality of LSTM can obtain Nash Efficiency exceeding 0.98, while the standard RNN and RNN-BPTT also provide very high accuracy.

도시에서 홍수 피해를 방지하기 위한 침수를 예측하기 위해 본 논문에서는 딥러닝(Deep Learning) 기법을 적용한다. 딥러닝 기법 중 시계열 데이터 분석에 적합한 Recurrent Neural Networks (RNNs)을 활용하여 강의 수위 관측 데이터를 학습하고 침수 가능성을 예측하였다. 예측 정확도 검증을 위해 사용한 데이터는 미국의 트리니티강의 데이터로, 학습을 위해 2013 년부터 2015 년까지 데이터를 사용하였고 평가 데이터로는 2016 년 데이터를 사용하였다. 입력은 16개의 레코드로 구성된 15분단위의 시계열 데이터를 사용하였고, 출력으로는 30분과 60분 후의 강의 수위 예측 정보이다. 실험에 사용한 딥러닝 모델들은 표준 RNN, RNN-BPTT(Back Propagation Through Time), LSTM(Long Short-Term Memory)을 사용했는데, 그 중 LSTM의 NE(Nash Efficiency)가 0.98을 넘는 정확도로 기존 연구에 비해 매우 높은 성능 향상을 보였고, 표준 RNN과 RNN-BPTT에 비해서도 좋은 성능을 보였다.

Keywords

References

  1. B. Bazartseren, G. Hildebrandt, K. P. Holz, "Shortterm water level prediction using neural networks and neuro-fuzzy approach," Neurocomputing, Vol. 55, No. 3, pp. 439-450, 2003. https://doi.org/10.1016/S0925-2312(03)00388-6
  2. F. J. Chang, P. A. Chen, Y. R. Lu, E. Huang, K. Y. Chang, "Real-time Multi-Step-Ahead Water Level Forecasting by Recurrent Neural Networks for Urban Flood Control," Journal of Hydrology, Vol. 517, pp. 836-846, 2014. https://doi.org/10.1016/j.jhydrol.2014.06.013
  3. A. Graves, J. Schmidhuber, "Framewise Phoneme Classification with Bidirectional LSTM and Other Neural Network Architectures," Neural Networks, Vol. 18, No. 5, pp. 602-610, 2005. https://doi.org/10.1016/j.neunet.2005.06.042
  4. K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, J. Schmidhuber, "LSTM: A Search Space Odyssey," IEEE Transactions on Neural Networks and Learning Systems, Vol. PP, Issue 99, 2016.
  5. Z. He, X. Wen, H. Liu, J. Du, "A Comparative Study of Artificial Neural Network, Adaptive Neuro Fuzzy Inference System and Support Vector Machine for Forecasting River Flow in the Semiarid Mountain Region," Journal of Hydrology, Vol. 509, pp. 379-386, 2014. https://doi.org/10.1016/j.jhydrol.2013.11.054
  6. N.Q. Hung, M.S. Babel, S. Weesakul, N.K. Tripathi, "An Artificial Neural Network Model for Rainfall Forecasting in Bangkok, Thailand," Hydrology and Earth System Sciences, Vol. 13, No. 8, pp. 1413-1425, 2009. https://doi.org/10.5194/hess-13-1413-2009
  7. S. Hochreiter, J. Schmidhuber, "Long Short Term Memory," Neural Computation, Vol. 9, No. 8, pp. 1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735
  8. S. Hochreiter, "The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions," International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 6, No. 02, pp. 107-116, 1998. https://doi.org/10.1142/S0218488598000094
  9. Y. LeCun, Y. Bengio, G. Hinton, "Deep Learning," Nature, Vol. 521, No. 7553, pp. 436-444, 2015. https://doi.org/10.1038/nature14539
  10. D. E. Rumelhart, G. Hinton, R. J. Williams, "Learning Representations by Back-propagating Errors," Cognitive Modeling, Vol. 5, No. 3, p. 213-220, 1988.
  11. P. J. Werbos, "Backpropagation Through Time: What It Does and How To Do It," Proc. of the IEEE, Vol. 78, No. 10, pp. 1550-1560, 1990. https://doi.org/10.1109/5.58337
  12. Theano [Online]. Available: http://deeplearning.net/software/theano/ (last accessed: Sep. 2016)
  13. USGS-WaterWatch [Online]. Available: http://waterwatch.usgs.gov/index.php?m=flood&r=tx&w=map (last accessed: Sep. 2016)

Cited by

  1. Comparison of Optimization Algorithms in Deep Learning-Based Neural Networks for Hydrological Forecasting: Case Study of Nam River Daily Runoff vol.18, pp.6, 2018, https://doi.org/10.9798/KOSHAM.2018.18.6.377