DOI QR코드

DOI QR Code

Therapeutic implication of autophagy in neurodegenerative diseases

  • Rahman, Md. Ataur (Center for Neuroscience, Korea Institute of Science and Technology) ;
  • Rhim, Hyewhon (Center for Neuroscience, Korea Institute of Science and Technology)
  • Received : 2017.04.10
  • Published : 2017.07.31

Abstract

Autophagy, a catabolic process necessary for the maintenance of intracellular homeostasis, has recently been the focus of numerous human diseases and conditions, such as aging, cancer, development, immunity, longevity, and neurodegeneration. However, the continued presence of autophagy is essential for cell survival and dysfunctional autophagy is thought to speed up the progression of neurodegeneration. The actual molecular mechanism behind the progression of dysfunctional autophagy is not yet fully understood. Emerging evidence suggests that basal autophagy is necessary for the removal of misfolded, aggregated proteins and damaged cellular organelles through lysosomal mediated degradation. Physiologically, neurodegenerative disorders are related to the accumulation of amyloid ${\beta}$ peptide and ${\alpha}-synuclein$ protein aggregation, as seen in patients with Alzheimer's disease and Parkinson's disease, respectively. Even though autophagy could impact several facets of human biology and disease, it generally functions as a clearance for toxic proteins in the brain, which contributes novel insight into the pathophysiological understanding of neurodegenerative disorders. In particular, several studies demonstrate that natural compounds or small molecule autophagy enhancer stimuli are essential in the clearance of amyloid ${\beta}$ and ${\alpha}-synuclein$ deposits. Therefore, this review briefly deliberates on the recent implications of autophagy in neurodegenerative disorder control, and emphasizes the opportunities and potential therapeutic application of applied autophagy.

Keywords

References

  1. Mizushima N, Levine B, Cuervo AM and Klionsky DJ (2008) Autophagy fights disease through cellular selfdigestion. Nature 451, 1069-1075 https://doi.org/10.1038/nature06639
  2. Kotoulas OB, Kalamidas SA and Kondomerkos DJ (2006) Glycogen autophagy in glucose homeostasis. Pathol Res Pract 202, 631-638 https://doi.org/10.1016/j.prp.2006.04.001
  3. Singh R, Kaushik S, Wang Y et al (2009) Autophagy regulates lipid metabolism. Nature 458, 1131-1135 https://doi.org/10.1038/nature07976
  4. Rubinsztein DC, Marino G and Kroemer G (2011) Autophagy and aging. Cell 146, 682-695 https://doi.org/10.1016/j.cell.2011.07.030
  5. Toth ML, Sigmond T, Borsos E et al (2008) Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4, 330-338 https://doi.org/10.4161/auto.5618
  6. Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR and Finley KD (2008) Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4, 176-184 https://doi.org/10.4161/auto.5269
  7. Meng Q and Cai D (2011) Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IkappaB kinase beta (IKKbeta)/NF-kappaB pathway. J Biol Chem 286, 32324-32332 https://doi.org/10.1074/jbc.M111.254417
  8. Yang L, Li P, Fu S, Calay ES and Hotamisligil GS (2010) Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 11, 467-478 https://doi.org/10.1016/j.cmet.2010.04.005
  9. Jung HS and Lee M-S (2010) Role of autophagy in diabetes and mitochondria. Ann N Y Acad Sci 1201, 79-83 https://doi.org/10.1111/j.1749-6632.2010.05614.x
  10. Komatsu M, Waguri S, Chiba T et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880-884 https://doi.org/10.1038/nature04723
  11. Spilman P, Podlutskaya N, Hart MJ et al (2010) Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-beta levels in a mouse model of Alzheimer's disease. PLoS One 5, e9979 https://doi.org/10.1371/journal.pone.0009979
  12. Rodriguez-Navarro JA, Rodriguez L, Casarejos MJ et al (2010) Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis 39, 423-438 https://doi.org/10.1016/j.nbd.2010.05.014
  13. Pan T, Kondo S, Le W and Jankovic J (2008) The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain 131, 1969-1978 https://doi.org/10.1093/brain/awm318
  14. Ravikumar B, Vacher C, Berger Z et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36, 585-595 https://doi.org/10.1038/ng1362
  15. Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889 https://doi.org/10.1038/nature04724
  16. Hernandez D, Torres CA, Setlik W et al (2012) Regulation of presynaptic neurotransmission by macroautophagy. Neuron 74, 277-284 https://doi.org/10.1016/j.neuron.2012.02.020
  17. Komatsu M, Wang QJ, Holstein GR et al (2007) Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proc Natl Acad Sci U S A 104, 14489-14494 https://doi.org/10.1073/pnas.0701311104
  18. Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19, 983-997 https://doi.org/10.1038/nm.3232
  19. Hamasaki M, Furuta N, Matsuda A et al (2013) Autophagosomes form at ER- mitochondria contact sites. Nature 495, 389-393 https://doi.org/10.1038/nature11910
  20. Ge L, Zhang M and Schekman R (2014) Phosphatidylinositol 3-kinase and COPII generate LC3 lipidation vesicles from the ER-Golgi intermediate compartment. Elife 3, e04135
  21. Moreau K, Ravikumar B, Renna M, Puri C and Rubinsztein DC (2011) Autophagosome precursor maturation requires homotypic fusion. Cell 146, 303-317 https://doi.org/10.1016/j.cell.2011.06.023
  22. Pozueta J, Lefort R, Ribe EM, Troy CM, Arancio O and Shelanski M (2013) Caspase-2 is required for dendritic spine and behavioural alterations in J20 APP transgenic mice. Nat Commun 4, 1939 https://doi.org/10.1038/ncomms2927
  23. Ohashi Y and Munro S (2010) Membrane delivery to the yeast autophagosome from the Golgi-endosomal system. Mol Biol Cell 21, 3998-4008 https://doi.org/10.1091/mbc.E10-05-0457
  24. Shpilka T, Welter E, Borovsky N et al (2015) Lipid droplets and their component triglycerides and steryl esters regulate autophagosome biogenesis. EMBO J 34, 2117-2131 https://doi.org/10.15252/embj.201490315
  25. Rubinsztein DC, Shpilka T and Elazar Z (2012) Mechanisms of autophagosome biogenesis. Curr Biol 22, R29-34 https://doi.org/10.1016/j.cub.2011.11.034
  26. Ohsumi Y (2014) Historical landmarks of autophagy research. Cell Res 24, 9-23 https://doi.org/10.1038/cr.2013.169
  27. Pankiv S, Clausen TH, Lamark T et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282, 24131-24145 https://doi.org/10.1074/jbc.M702824200
  28. Thurston TLM, Ryzhakov G, Bloor S, von Muhlinen N and Randow F (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitincoated bacteria. Nat Immunol 10, 1215-1221 https://doi.org/10.1038/ni.1800
  29. Rabinowitz JD and White E (2010) Autophagy and metabolism. Science 330, 1344-1348 https://doi.org/10.1126/science.1193497
  30. Geisler S, Holmstrom KM, Skujat D et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12, 119-131 https://doi.org/10.1038/ncb2012
  31. Kim PK, Hailey DW, Mullen RT and Lippincott-Schwartz J (2008) Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad Sci U S A 105, 20567-20574 https://doi.org/10.1073/pnas.0810611105
  32. Bernales S, Schuck S and Walter P (2007) ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 3, 285-287 https://doi.org/10.4161/auto.3930
  33. Kirkin V, Lamark T, Sou Y-S et al (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33, 505-516 https://doi.org/10.1016/j.molcel.2009.01.020
  34. Giacomelli C, Daniele S and Martini C (2017) Potential biomarkers and novel pharmacological targets in protein aggregation-related neurodegenerative diseases. Biochem Pharmacol 131, 1-15 https://doi.org/10.1016/j.bcp.2017.01.017
  35. Berger Z, Ravikumar B, Menzies FM et al (2006) Rapamycin alleviates toxicity of different aggregateprone proteins. Hum Mol Genet 15, 433-442 https://doi.org/10.1093/hmg/ddi458
  36. Spencer B, Potkar R, Trejo M et al (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases. J Neurosci 29, 13578-13588 https://doi.org/10.1523/JNEUROSCI.4390-09.2009
  37. De Strooper B and Karran E (2016) The Cellular Phase of Alzheimer's Disease. Cell 164, 603-615 https://doi.org/10.1016/j.cell.2015.12.056
  38. Zare-Shahabadi A, Masliah E, Johnson GVW and Rezaei N (2015) Autophagy in Alzheimer's disease. Rev Neurosci 26, 385-395
  39. Iqbal K, Liu F and Gong C-X (2016) Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12, 15-27 https://doi.org/10.1038/nrneurol.2015.225
  40. Lin L-F, Liao M-J, Xue X-Y et al (2013) Combination of Abeta clearance and neurotrophic factors as a potential treatment for Alzheimer's disease. Neurosci Bull 29, 111-120 https://doi.org/10.1007/s12264-012-1287-6
  41. Boland B, Kumar A, Lee S et al (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci 28, 6926-6937 https://doi.org/10.1523/JNEUROSCI.0800-08.2008
  42. Nilsson P, Loganathan K, Sekiguchi M et al (2013) Abeta secretion and plaque formation depend on autophagy. Cell Rep 5, 61-69 https://doi.org/10.1016/j.celrep.2013.08.042
  43. Xue Z, Guo Y, Zhang S et al (2014) Beta-asarone attenuates amyloid beta-induced autophagy via Akt/mTOR pathway in PC12 cells. Eur J Pharmacol 741, 195-204 https://doi.org/10.1016/j.ejphar.2014.08.006
  44. Wolfe DM, Lee J-H, Kumar A, Lee S, Orenstein SJ and Nixon RA (2013) Autophagy failure in Alzheimer's disease and the role of defective lysosomal acidification. Eur J Neurosci 37, 1949-1961 https://doi.org/10.1111/ejn.12169
  45. Tan C-C, Yu J-T, Tan M-S, Jiang T, Zhu X-C and Tan L (2014) Autophagy in aging and neurodegenerative diseases: implications for pathogenesis and therapy. Neurobiol Aging 35, 941-957 https://doi.org/10.1016/j.neurobiolaging.2013.11.019
  46. Jaber N and Zong W-X (2013) Class III PI3K Vps34: essential roles in autophagy, endocytosis, and heart and liver function. Ann N Y Acad Sci 1280, 48-51 https://doi.org/10.1111/nyas.12026
  47. Martinez-Vicente M (2015) Autophagy in neurodegenerative diseases: From pathogenic dysfunction to therapeutic modulation. Semin Cell Dev Biol 40, 15-26
  48. Eketjall S, Janson J, Jeppsson F et al (2013) AZ-4217: a high potency BACE inhibitor displaying acute central efficacy in different in vivo models and reduced amyloid deposition in Tg2576 mice. J Neurosci 33, 10075-10084 https://doi.org/10.1523/JNEUROSCI.1165-13.2013
  49. Marwarha G, Raza S, Meiers C and Ghribi O (2014) Leptin attenuates BACE1 expression and amyloid-beta genesis via the activation of SIRT1 signaling pathway. Biochim Biophys Acta 1842, 1587-1595 https://doi.org/10.1016/j.bbadis.2014.05.015
  50. Murakami K, Watanabe T, Koike T, Kamata M, Igari T and Kondo S (2016) Pharmacological properties of a novel and potent gamma-secretase modulator as a therapeutic option for the treatment of Alzheimer's disease. Brain Res 1633, 73-86 https://doi.org/10.1016/j.brainres.2015.12.016
  51. Geldenhuys WJ and Darvesh AS (2015) Pharmacotherapy of Alzheimer's disease: current and future trends. Expert Rev Neurother 15, 3-5 https://doi.org/10.1586/14737175.2015.990884
  52. Gauthier S and Molinuevo JL (2013) Benefits of combined cholinesterase inhibitor and memantine treatment in moderate-severe Alzheimer's disease. Alzheimers Dement 9, 326-331 https://doi.org/10.1016/j.jalz.2011.11.005
  53. Ismaili L, Refouvelet B, Benchekroun M et al (2017) Multitarget compounds bearing tacrine- and donepezillike structural and functional motifs for the potential treatment of Alzheimer's disease. Prog Neurobiol 151, 4-34 https://doi.org/10.1016/j.pneurobio.2015.12.003
  54. Li L, Zhang S, Zhang X et al (2013) Autophagy enhancer carbamazepine alleviates memory deficits and cerebral amyloid-beta pathology in a mouse model of Alzheimer's disease. Curr Alzheimer Res 10, 433-441 https://doi.org/10.2174/1567205011310040008
  55. Majumder S, Richardson A, Strong R and Oddo S (2011) Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS One 6, e25416 https://doi.org/10.1371/journal.pone.0025416
  56. Zhang X, Heng X, Li T et al (2011) Long-term treatment with lithium alleviates memory deficits and reduces amyloid-beta production in an aged Alzheimer's disease transgenic mouse model. J Alzheimers Dis 24, 739-749 https://doi.org/10.3233/JAD-2011-101875
  57. Steele JW, Lachenmayer ML, Ju S et al (2013) Latrepirdine improves cognition and arrests progression of neuropathology in an Alzheimer's mouse model. Mol Psychiatry 18, 889-897 https://doi.org/10.1038/mp.2012.106
  58. Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT and Goedert M (2012) Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain 135, 2169-2177 https://doi.org/10.1093/brain/aws143
  59. Ozcelik S, Fraser G, Castets P et al (2013) Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice. PLoS One 8, e62459 https://doi.org/10.1371/journal.pone.0062459
  60. Shimada K, Motoi Y, Ishiguro K et al (2012) Long-term oral lithium treatment attenuates motor disturbance in tauopathy model mice: implications of autophagy promotion. Neurobiol Dis 46, 101-108 https://doi.org/10.1016/j.nbd.2011.12.050
  61. Lees AJ, Hardy J and Revesz T. Parkinson's disease. Lancet (London, England) 373, 2055-2066 https://doi.org/10.1016/S0140-6736(09)60492-X
  62. Sveinbjornsdottir S (2016) The clinical symptoms of Parkinson's disease. J Neurochem 139, 318-324 https://doi.org/10.1111/jnc.13691
  63. Martin I, Dawson VL and Dawson TM (2011) Recent advances in the genetics of Parkinson's disease. Annu Rev Genomics Hum Genet 12, 301-325 https://doi.org/10.1146/annurev-genom-082410-101440
  64. Goedert M, Spillantini MG, Del Tredici K and Braak H (2013) 100 years of Lewy pathology. Nat Rev Neurol 9, 13-24 https://doi.org/10.1038/nrrheum.2012.143
  65. Winslow AR, Chen C-W, Corrochano S et al (2010) alpha-Synuclein impairs macroautophagy: implications for Parkinson's disease. J Cell Biol 190, 1023-1037 https://doi.org/10.1083/jcb.201003122
  66. Williams A, Sarkar S, Cuddon P et al (2008) Novel targets for Huntington's disease in an mTORindependent autophagy pathway. Nat Chem Biol 4, 295-305 https://doi.org/10.1038/nchembio.79
  67. Decressac M, Mattsson B, Weikop P, Lundblad M, Jakobsson J and Bjorklund A (2013) TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity. Proc Natl Acad Sci U S A 110, E1817-1826 https://doi.org/10.1073/pnas.1305623110
  68. Kahle PJ (2008) alpha-Synucleinopathy models and human neuropathology: similarities and differences. Acta Neuropathol 115, 87-95
  69. Rubinsztein DC, Codogno P and Levine B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11, 709-730 https://doi.org/10.1038/nrd3802
  70. Maiese K, Chong ZZ, Shang YC and Wang S (2013) mTOR: on target for novel therapeutic strategies in the nervous system. Trends Mol Med 19, 51-60 https://doi.org/10.1016/j.molmed.2012.11.001
  71. Webb JL, Ravikumar B, Atkins J, Skepper JN and Rubinsztein DC (2003) Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278, 25009-25013 https://doi.org/10.1074/jbc.M300227200
  72. Crews L, Spencer B, Desplats P et al (2010) Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS One 5, e9313 https://doi.org/10.1371/journal.pone.0009313
  73. Pan T, Rawal P, Wu Y, Xie W, Jankovic J and Le W (2009) Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience 164, 541-551 https://doi.org/10.1016/j.neuroscience.2009.08.014
  74. Malagelada C, Jin ZH, Jackson-Lewis V, Przedborski S and Greene LA (2010) Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease. J Neurosci 30, 1166-1175 https://doi.org/10.1523/JNEUROSCI.3944-09.2010
  75. Bai X, Wey MC-Y, Fernandez E et al (2015) Rapamycin improves motor function, reduces 4-hydroxynonenal adducted protein in brain, and attenuates synaptic injury in a mouse model of synucleinopathy. Pathobiol Aging Age Relat Dis 5, 28743 https://doi.org/10.3402/pba.v5.28743
  76. Tain LS, Mortiboys H, Tao RN, Ziviani E, Bandmann O and Whitworth AJ (2009) Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat Neurosci 12, 1129-1135 https://doi.org/10.1038/nn.2372
  77. Bove J, Martinez-Vicente M and Vila M (2011) Fighting neurodegeneration with rapamycin: mechanistic insights. Nat Rev Neurosci 12, 437-452 https://doi.org/10.1038/nrn3068
  78. Forlenza O V, De-Paula VJR and Diniz BSO (2014) Neuroprotective effects of lithium: implications for the treatment of Alzheimer's disease and related neurodegenerative disorders. ACS Chem Neurosci 5, 443-450 https://doi.org/10.1021/cn5000309
  79. Sarkar S, Floto RA, Berger Z et al (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170, 1101-1111 https://doi.org/10.1083/jcb.200504035
  80. Hou L, Xiong N, Liu L et al (2015) Lithium protects dopaminergic cells from rotenone toxicity via autophagy enhancement. BMC Neurosci 16, 82 https://doi.org/10.1186/s12868-015-0222-y
  81. Chao T-K, Hu J and Pringsheim T (2017) Risk factors for the onset and progression of Huntington disease. Neurotoxicology 2130, 21
  82. Fan H-C, Ho L-I, Chi C-S et al (2014) Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant 23, 441-458 https://doi.org/10.3727/096368914X678454
  83. Jiang W, Wei W, Gaertig MA, Li S and Li X-J (2015) Therapeutic Effect of Berberine on Huntington's Disease Transgenic Mouse Model. PLoS One 10, e0134142 https://doi.org/10.1371/journal.pone.0134142
  84. Wu A-G, Wong VK-W, Xu S-W et al (2013) Onjisaponin B derived from Radix Polygalae enhances autophagy and accelerates the degradation of mutant alpha-synuclein and huntingtin in PC-12 cells. Int J Mol Sci 14, 22618-22641 https://doi.org/10.3390/ijms141122618
  85. Sun Y-M, Lu C and Wu Z-Y (2016) Spinocerebellar ataxia: relationship between phenotype and genotype - a review. Clin Genet 90, 305-314 https://doi.org/10.1111/cge.12808
  86. Menzies FM, Huebener J, Renna M, Bonin M, Riess O and Rubinsztein DC (2010) Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain 133, 93-104 https://doi.org/10.1093/brain/awp292
  87. Lin C-H, Wu Y-R, Yang J-M et al (2016) Novel Lactulose and Melibiose Targeting Autophagy to Reduce PolyQ Aggregation in Cell Models of Spinocerebellar Ataxia 3. CNS Neurol Disord Drug Targets 15, 351 https://doi.org/10.2174/1871527314666150821101522
  88. Zarei S, Carr K, Reiley L et al (2015) A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int 6, 171 https://doi.org/10.4103/2152-7806.169561
  89. Morimoto N, Nagai M, Ohta Y et al (2007) Increased autophagy in transgenic mice with a G93A mutant SOD1 gene. Brain Res 1167, 112-117 https://doi.org/10.1016/j.brainres.2007.06.045
  90. Gal J, Strom A-L, Kwinter DM et al (2009) Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism. J Neurochem 111, 1062-1073 https://doi.org/10.1111/j.1471-4159.2009.06388.x
  91. Castillo K, Nassif M, Valenzuela V et al (2013) Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy 9, 1308-1320 https://doi.org/10.4161/auto.25188
  92. Frake RA, Ricketts T, Menzies FM and Rubinsztein DC (2015) Autophagy and neurodegeneration. J Clin Invest 125, 65-74 https://doi.org/10.1172/JCI73944
  93. Moreau K, Fleming A, Imarisio S et al (2014) PICALM modulates autophagy activity and tau accumulation. Nat Commun 5, 4998 https://doi.org/10.1038/ncomms5998
  94. Benjamin D, Colombi M, Moroni C and Hall MN (2011) Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov 10, 868-880 https://doi.org/10.1038/nrd3531
  95. Choi H, Kim HJ, Kim J et al (2017) Increased acetylation of Peroxiredoxin1 by HDAC6 inhibition leads to recovery of Abeta-induced impaired axonal transport. Mol Neurodegener 12, 23 https://doi.org/10.1186/s13024-017-0164-1
  96. Cha M-Y, Kwon Y-W, Ahn H-S et al (2017) Protein-Induced Pluripotent Stem Cells Ameliorate Cognitive Dysfunction and Reduce Abeta Deposition in a Mouse Model of Alzheimer's Disease. Stem Cells Transl Med 6, 293-305 https://doi.org/10.5966/sctm.2016-0081
  97. Son SM, Cha M-Y, Choi H et al (2016) Insulin-degrading enzyme secretion from astrocytes is mediated by an autophagy-based unconventional secretory pathway in Alzheimer disease. Autophagy 12, 784-800 https://doi.org/10.1080/15548627.2016.1159375
  98. Son SM, Kang S, Choi H and Mook-Jung I (2015) Statins induce insulin-degrading enzyme secretion from astrocytes via an autophagy-based unconventional secretory pathway. Mol Neurodegener 10, 56 https://doi.org/10.1186/s13024-015-0054-3
  99. Huang L, Luo Y, Pu Z et al (2017) Oxoisoaporphine alkaloid derivative 8-1 reduces Abeta1- 42 secretion and toxicity in human cell and Caenorhabditis elegans models of Alzheimer's disease. Neurochem Int 108, 157-168 https://doi.org/10.1016/j.neuint.2017.03.007
  100. Huang M, Jiang X, Liang Y, Liu Q, Chen S and Guo Y (2017) Berberine improves cognitive impairment by promoting autophagic clearance and inhibiting production of beta-amyloid in APP/tau/PS1 mouse model of Alzheimer's disease. Exp Gerontol 91, 25-33 https://doi.org/10.1016/j.exger.2017.02.004
  101. Jiang T-F, Zhang Y-J, Zhou H-Y et al (2013) Curcumin ameliorates the neurodegenerative pathology in A53T alpha-synuclein cell model of Parkinson's disease through the downregulation of mTOR/p70S6K signaling and the recovery of macroautophagy. J Neuroimmune Pharmacol 8, 356-369 https://doi.org/10.1007/s11481-012-9431-7
  102. Rahman MA, Bishayee K, Sadra A and Huh S-O (2017) Oxyresveratrol activates parallel apoptotic and autophagic cell death pathways in neuroblastoma cells. Biochim Biophys Acta 1861, 23-36 https://doi.org/10.1016/j.bbagen.2016.10.025
  103. Rahman MA, Bishayee K, Habib K, Sadra A and Huh S-O (2016) 18alpha-Glycyrrhetinic acid lethality for neuroblastoma cells via de-regulating the Beclin-1/Bcl-2 complex and inducing apoptosis. Biochem Pharmacol 117, 97-112 https://doi.org/10.1016/j.bcp.2016.08.006
  104. Bernard A, Jin M, Xu Z and Klionsky DJ (2015) A large-scale analysis of autophagy-related gene expression identifies new regulators of autophagy. Autophagy 11, 2114-2122 https://doi.org/10.1080/15548627.2015.1099796

Cited by

  1. Cellular and molecular mechanisms involved in the resolution of innate leukocyte inflammation vol.104, pp.3, 2018, https://doi.org/10.1002/JLB.3MA0218-070R
  2. Autophagy vol.24, pp.2, 2018, https://doi.org/10.1097/MCC.0000000000000486
  3. Recent Advances in Studies on the Therapeutic Potential of Dietary Carotenoids in Neurodegenerative Diseases vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/4120458
  4. 11β-HSD1 Inhibition by RL-118 Promotes Autophagy and Correlates with Reduced Oxidative Stress and Inflammation, Enhancing Cognitive Performance in SAMP8 Mouse Model pp.1559-1182, 2018, https://doi.org/10.1007/s12035-018-1026-8
  5. mTOR: A Cellular Regulator Interface in Health and Disease vol.8, pp.1, 2019, https://doi.org/10.3390/cells8010018