DOI QR코드

DOI QR Code

Validation of Complementary Relationship Hypothesis for Evapotranspiration in Multipurpose Dam Basins

다목적댐유역에서의 증발산 보완관계가설 검증

  • 김지훈 (단국대학교 토목환경공학과) ;
  • 강부식 (단국대학교 토목환경공학과) ;
  • 김진겸 (단국대학교 토목환경공학과)
  • Received : 2016.08.20
  • Accepted : 2017.02.16
  • Published : 2017.06.01

Abstract

The complementary relationship hypothesis for areal evapotranspirations was validated in the regional-scale area of multipurpose dam basins in Korea and the long-term water balances were indirectly identified. Annual actual evapotranspiration ($ET_A$) was assumed the difference between total annual precipitation and total annual inflow and the available moisture was assumed the total precipitation. The seasonally varying pan coefficient (kp) is estimated as the ratio of the $ET_{pan}$ and the evapotranspiration calculated by FAO Penman-Monteith equation ($ET_{PM}$). The complementary relationships using ground observation data of $ET_P$ and $ET_A$ in the multipurpose dam basins follow generally the typical pattern that $ET_P$ and $ET_A$ is complementary and converges to equivalent evapotranspiration ($ET_W$) under the extreme wet environment. However, $ET_A$ of Juam dam was estimated relatively greater than other basins and exceeds even $ET_P$ at certain range with high moisture availability, which can be understood as the results of possible over-estimation of precipitation or under-estimation of dam inflow. It is expected that the use of evapotranspiration complementary relationship for validating hydrological water balances will contribute to controlling uncertainties in estimating dam inflows during flood season in particular.

잠재증발산($ET_P$)과 실제증발산($ET_A$) 사이의 보완관계 가설을 국내 다목적댐 유역에 적용하여, 각 유역의 기상 수문 관측자료를 기반으로 잠재 및 실제 증발산사이의 보완관계 성립을 검증하고자 하였다. 연단위 실제증발량($ET_A$)은 총강수량과 총유출량의 차이로서 간접추정하였으며, 가용수분량은 연강수량으로 대체하여 사용하였다. 이때, 팬증발량 보정에 사용된 팬계수(kp)는 홍수기 및 비홍수기로 구분하여 $ET_{pan}$과 FAO Penman-Monteith 식으로 계산된 증발량($ET_{PM}$)의 비를 통해 산정하였다. 각 다목적댐 유역에서 관측자료 기반의 독립적으로 계산된 $ET_P$$ET_A$를 통해 보완관계를 산정한 결과, 대부분의 유역에서 가용수분량이 증가할수록 $ET_P$는 감소함과 동시에 $ET_A$는 증가하는 일반적인 보완관계의 패턴을 잘 보였고, 강수량의 증가에 따라 평형증발산량($ET_W$)의 수렴을 확인할 수 있었다. 하지만, 주암댐의 경우 $ET_A$가 다른 댐 유역에 비해 크게 산정되어 가용수분량이 큰 구간에서 $ET_P$를 초과하는 경우도 발생하였다. 이는 주암댐 유역의 강수량의 과다산정 혹은 유입량의 과소산정의 가능성을 보여주는 결과로 해석될 수 있다. 증발산 보완관계를 수문학적 물수지검증을 위한 기준으로 활용한다면 홍수기 다목적댐 유입량 산정의 불확실성을 제어하는데 도움이 될 것으로 기대한다.

Keywords

References

  1. Allen, R. G., Pereira, L. S., Raes, L. S. and Smith, M. (1998). Crop evapotranspiration-guidelines for computing crop water requirement. FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, 300 p.
  2. Allen, R. G., Smith, M., Perrier, A. and Periira, L. S. (1994). "An update for the definition of reference evapotranspiration." ICID Bull., Vol. 43, No. 2, pp. 1-34.
  3. Bouchet, R. J. (1963). "Evapotranspiration reelle et potentielle, signification climatiqe." International Association of Hydrological Sciences Publication, Vol. 62, pp.134-142.
  4. Brutsaert, W. and Parlange, M. B. (1998). "Hydrologic cycle explains the evaporation paradox." Nature, Vol. 396, No. 6706, pp. 30-30. https://doi.org/10.1038/23845
  5. Brutsaert, W. and Stricker, H. (1979). "An advection-aridity approach to estimate actual regional evapotranspiration." Water Resources Research, Vol. 15, No. 2, pp. 443-450. https://doi.org/10.1029/WR015i002p00443
  6. Droogers, P. and Allen, R. G. (2002). "Estimating reference evapotranspiration under inaccurate data conditions." Irrigation and Drainage Systems, Vol. 16, pp. 33-45. https://doi.org/10.1023/A:1015508322413
  7. Golubev, V. S., Lawrimore, J. H., Groisman, P. Y., Speranskaya, N. A., Zhuravin, S. A., Menne, M. J. and Malone, R. W. (2001). "Evaporation changes over the contiguous United States and the former USSR : A reassessment." Geophysical Research Letters, Vol. 28, No. 13, pp. 2665-2668. https://doi.org/10.1029/2000GL012851
  8. Granger, R. J. and Gray, D. M. (1989). "Evaporation from natural nonsaturated surfaces." J. Hydrol., Vol. 111, pp. 21-29. https://doi.org/10.1016/0022-1694(89)90249-7
  9. Han River Flood Control Office (2003), Water Resources Management Information System, Available at : https://www.wamis.go.kr (Accessed : June 6, 2016).
  10. Hobbins, M. T., Ramirez, J. A., Brown, T. C. and Claessens, L. (2001a). "The complementary relationship in estimation of regional evapotranspiration : The complementary relationship areal evapotranspiration and advection-aridity models." Water Resources Research, Vol. 37, No. 5, pp. 1367-1387. https://doi.org/10.1029/2000WR900358
  11. Hobbins, M. T., Ramirez, J. A. and Brown T. C. (2001b). "The complementary relationship in estimation of regional evapotranspiration : An enhanced advection-aridity model." Water Resources Research, Vol. 37, No. 5, pp. 1389-1403. https://doi.org/10.1029/2000WR900359
  12. Hobbins, M. T., Ramirez, J. A. and Brown, T. C. (2004). " Trends in pan evaporation and actual evapotranspiration across the conterminous US : paradoxical or complementary?" Geophysical Research Letters, Vol. 31, No. 13.
  13. Kim, N. W. and Kim, C. K. (2004). "Comparison of Penman-Monteith method and morton CARE method for estimating areal evapotranspiration." In 2004 Korea Water Resources Association Conference, Incheon, Korea (pp. 14-15) (in Korean).
  14. Kim, N. W. and Lee, J. (2014). "Assessment of complementary relationship evapotranspiration models for the Bokahcheon uppermiddle watershed." Journal of Korea Water Resources Association, pp. 547-559 (in Korean).
  15. Korea Meteorological Administration (2015). Meteorological data open portal, Available at : https://data.kma.go.kr (Accessed : June 10, 2016)
  16. Ma, N., Zhang, Y., Szilagyi, J., Guo, Y., Zhai, J. and Gao, H. (2015). "Evaluating the complementary relationship of evapotranspiration in the alpine steppe of the Tibetan Plateau." Water Resources Research, Vol. 51, No. 2, pp. 1069-1083. https://doi.org/10.1002/2014WR015493
  17. Monteith, J. L. (1981). "Evaporation and surface temperature." Quarterly Journal of the Royal Meteorological Society, Vol. 107, No. 451, pp. 1-27. https://doi.org/10.1002/qj.49710745102
  18. Morton, F. I. (1983). "Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology." Journal of Hydrology, Vol. 66, No. 1, pp. 1-76. https://doi.org/10.1016/0022-1694(83)90177-4
  19. Ozdogan, M. and Salvucci, G. D. (2004). "Irrigation-induced changes in potential evapotranspiration in southeastern Turkey : Test and application of Bouchet's complementary hypothesis." Water Resources Research, Vol. 40, No. 4.
  20. Pettijohn, J. C. and Salvucci, G. D. (2009). "A new two-dimensional physical basis for the complementary relation between terrestrial and pan evaporation." Journal of Hydrometeorology, Vol. 10, No. 2, pp. 565-574. https://doi.org/10.1175/2008JHM1026.1
  21. Priestley, C. H. B. (1972). On the assessment of surface heat flux and evaporation using large scale parameters. In Mon. Weather Rev.
  22. Ramirez, J. A., Hobbins, M. T. and Brown, T. C. (2005). "Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet's hypothesis." Geophysical Research Letters, Vol. 32, No. 15.
  23. Shin, H. J., Ha, R., Park, M. J. and Kim, S. J. (2010). Estimation of spatial evapotranspiration using the relationship between MODIS NDVI and morton ET-For Chungjudam watershed. Journal of the Korean Society of Agricultural Engineers, Vol. 52, No. 1, pp. 19-24 (in Korean). https://doi.org/10.5389/KSAE.2010.52.1.019
  24. Walter, I. A., Allen, R. G., Elliott, R., Mecham, B., Jensen, M. E., Itenfisu, D., Howell, T. A., Snyder, R., Brown, P., Echings, S., Spofford, T., Hattendorf, M., Cuenca, R. H., Wright, J. L. and Martin, D. (2000). "ASCE standardized reference evapotranspiration equation." Proc. National Irrigation Symposium, ASAE, Phoenix, AZ, pp. 209-215.
  25. Wang, T. and Zlotnik, V. A. (2012). "A complementary relationship between actual and potential evapotranspiration and soil effects." Journal of Hydrology, Vol. 456, pp. 146-150.
  26. Xu, C. Y. and Singh, V. P. (2005). "Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions." Journal of Hydrology, Vol. 308, No. 1, pp. 105-121. https://doi.org/10.1016/j.jhydrol.2004.10.024
  27. Yang, D., Sun, F., Liu, Z., Cong, Z. and Lei, Z. (2006). "Interpreting the complementary relationship in non-humid environments based on the Budyko and Penman hypotheses." Geophysical Research Letters, Vol. 33, No. 18.
  28. Yang, G., Pu, R., Zhao, C. and Xue, X. (2014). "Estimating high spatiotemporal resolution evapotranspiration over a winter wheat field using an IKONOS image based complementary relationship and Lysimeter observations." Agricultural Water Management, Vol. 133, pp. 34-43. https://doi.org/10.1016/j.agwat.2013.10.018
  29. Zotarelli, L., Dukes, M. D., Romero, C. C., Migliaccio, K. W. and Morgan, K. T. (2010). "Step by step calculation of the Penman-Monteith evapotranspiration (FAO-56 Method)." Institute of Food and Agricultural Sciences, University of Florida.
  30. Zuo, H., Chen, B., Wang, S., Guo, Y., Zuo, B., Wu, L. and Gao, X. (2016). "Observational study on complementary relationship between pan evaporation and actual evapotranspiration and its variation with pan type." Agricultural and Forest Meteorology, Vol. 222, pp. 1-9. https://doi.org/10.1016/j.agrformet.2016.03.002