DOI QR코드

DOI QR Code

Cellular Protective Effect and Active Component Analysis of Lavender (Lavandula angustifolia) Extracts and Fractions

라벤더(Lavandula angustifolia) 추출물 및 분획물의 세포보호효과와 활성 성분 분석

  • Kim, A Young (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Ha, Ji Hoon (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Kim, A Rang (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Jeong, Hyo Jin (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Kim, Kyoung Mi (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
  • 김아영 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 하지훈 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 김아랑 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 정효진 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 김경미 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소)
  • Received : 2017.05.25
  • Accepted : 2017.07.05
  • Published : 2017.08.10

Abstract

In this study, antioxidative activities and cellular protective effects of 70% ethanol extracts and fractions from lavender were evaluated. The scavenging activity ($FSC_{50}$) of free radical (1,1-phenyl-2-picrylhydrazyl, DPPH) was 46.6, 45.5 and $477.5{\mu}g/mL$ in the 70% ethanol extract, ethyl acetate fraction and aglycone fraction, respectively. The reactive oxygen species scavenging activities (${OSC_{50}$) of 70% ethanol extract, ethyl acetate fraction and aglycone fraction were 8.1, 3.3 and $17.6{\mu}g/mL$, respectively, and they showed lower antioxidative activity than that of using L-ascorbic acid ($1.5{\mu}g/mL$). However, the aglycone fraction showed higher photohemolysis protective effect than that of using the 70% ethanol extract and ethyl acetate fraction. At $50{\mu}M$ concentration, the cellular protective effect (${\tau}_{50}$) of 70% ethanol extract, ethyl acetate fraction and aglycone fraction from lavender was 70.6, 87.2 and 165.2 min, respectively. In particular, the lavender aglycone fraction showed 3.8 times higher cellular protective effect than that of (+)-${\alpha}$-tocopherol. The lavender fractional components including luteolin 7-O-glucuronide, vitextin, rosmarinic acid, luteolin, and apigenin were identified using TLC and LC-MS. However, the lavender aglycone fraction did not show any significant increase in flavonoids (luteolin and apigenin) compared to that of the ethyl acetate fraction. In conclusion, it is suggested that lavender may be applied as an antioxidant material in cosmetic industries.

본 연구에서는 라벤더 70% 에탄올 추출물 및 분획물의 항산화 활성과 세포보호효과를 조사하였다. 자유라디칼(1,1-phenyl-2-picrylhydrazyl, DPPH) 소거 활성($FSC_{50}$)은 라벤더 추출물, 에틸아세테이트 및 아글리콘 분획에서 각각 46.6, 45.5 및 $477.5{\mu}g/mL$를 나타냈다. $Fe^{3+}-EDTA/H_2O_2$계에서의 총항산화능($OSC_{50}$)은 라벤더 추출물, 에틸아세테이트 및 아글리콘분획에서 각각 8.1, 3.3 및 $17.6{\mu}g/mL$이었으며, L-ascorbic acid의 $OSC_{50}$ ($1.5{\mu}g/mL$)보다 낮은 활성을 나타냈다. $^1O_2$으로 유도된 적혈구 광용혈 실험에서 아글리콘 분획은 매우 큰 세포보호활성을 나타냈다. $50{\mu}M$ 농도에서 라벤더 추출물, 에틸아세테이트 및 아글리콘 분획의 세포보호효과(${\tau}_{50}$)가 70.6, 87.2 및 165.2 min으로 나타났다. 특히, 라벤더 아글리콘 분획은(+)-${\alpha}$-tocopherol 보다 3.8배 높은 세포보호효과를 나타냈다. TLC 및 LC-MS를 이용하여 라벤더 분획의 성분(luteolin 7-O-glucuronide, vitextin, rosmarinic acid, luteolin, apigenin)을 확인하였으며, 아글리콘 분획은 에틸아세테이트 분획에 비해 주요 플라보노이드(luteolin, apigenin)는 크게 증가하지 않았다. 결론적으로 라벤더가 화장품의 항산화 소재로써 응용 가능함을 시사한다.

Keywords

References

  1. V. Afonso, R. Champy, D. Mitrovic, P. I. Collin, and A. Lomri, Reactive oxygen species and superoxide dismutases : Role in joint diseases, Joint Bone Spine, 74(4), 324-329 (2007). https://doi.org/10.1016/j.jbspin.2007.02.002
  2. M. Yaar and B. A. Gilchrest, Photoageing: mechanism, prevention and therapy, Br. J. Dermatol., 157(5), 874-887 (2007). https://doi.org/10.1111/j.1365-2133.2007.08108.x
  3. S. N. Park, Effects of Flavonoids and Other Phenolic Compounds on Reactive Oxygen Mediated Biochemical Reactions, PhD Dissertation, Seoul National University, Seoul, Korea (1989).
  4. D. S. Lee, M. S. Lim, S. S. Kwan, S. Y. Kim, and S. N. Park, Antioxidative activity and componential analysis of Chamaecyparis obtusa leaf extract, Appl. Chem. Eng., 23, 93-99 (2012).
  5. M. J. Davies, Reactive oxygen species, metalloproteinases, and plaque stability, Am. Heart J., 23, 2382-2383 (1998).
  6. D. Bagchi, M. Bagchi, E. A. Hassoun, and S. J. Stohs, In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides, Toxicology, 104(1-3), 129-140 (1995). https://doi.org/10.1016/0300-483X(95)03156-A
  7. S. B. Berman and T. G. Hastings, Inhibition of glutamate transport in synaptosomes by dopamine oxidation and reactive oxygen species, J. Neurochem.., 69(3), 1185-1195 (1997).
  8. S. N. Park, Antioxidative properties of baicalein, component from Scutellaria baicalensis Georgi and its application to cosmetics (I), J. Korean Ind. Eng. Chem., 14, 657-665 (2003).
  9. J. Yamakoshi, F. Otsuka, A. Sano, S. Tokutake, M. Saito, M. Kikuchi, and Y. Kubota, Lightening effect on ultravioletinduced pigmentation of guinea pig skin by oral administration of a proanthocyanidin-rich extract from grape seeds, Pigment Cell Res., 16, 629-638 (2003). https://doi.org/10.1046/j.1600-0749.2003.00093.x
  10. S. N. Park, Protective effect of isoflavone, genistein from soybean on singlet oxygen induced photohemolysis of human erythrocytes. Korean J. Food Sci. Technol., 35, 510-518 (2003).
  11. S. A. Kyrtopoulos, N-nitroso compoud formation in human gastric juice, Cancer Surv., 8(2), 423-442 (1988).
  12. R. S. Sohala and W. C. Orrb. The redox stress hypothesis of aging, Free Radic. Biol. Med., 52(3), 539-555 (2012). https://doi.org/10.1016/j.freeradbiomed.2011.10.445
  13. R. Kahl and H. Kappus, Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E, Z. Lebensm. Unters. Forsch., 196, 329-338 (1993). https://doi.org/10.1007/BF01197931
  14. L. C. Magdalena and Y. A. Tak, Reactive oxygen species, cellular redox system, and apoptosis, Free Radic. Biol. Med., 48(6), 749-762 (2010). https://doi.org/10.1016/j.freeradbiomed.2009.12.022
  15. I. Spiridon, S. Colceru, N. Anghel, C. A. Teaca, R. Bodirlau, and A. Armatu, Antioxidant capacity and total phenolic contents of oregano (Origanum vulgare), lavender (Lavandula angustifolia) and lemon balm (Melissa officinalis) from Romania, Nat. Prod. Res., 25(17), 1657-1661 (2011). https://doi.org/10.1080/14786419.2010.521502
  16. Y. J. Ahn, B. R. Won, M. K. Kang, J. H. Kim, and S. N. Park, Antioxidant Activity and Component Analysis of Fermented Lavandula angustifolia Extracts, J. Soc. Cosmet. Sci. Korea, 35(2), 125-134 (2009).
  17. S. C. Dudaa, L. Al. Marghitas, D. Dezmireana, M. Dudab, R. Margaoana, and O. Bobis, Changes in major bioactive compounds with antioxidant activity of Agastache foeniculum, Lavandula angustifolia, Melissa officinalis and Nepeta cataria: Effect of harvest time and plant species, Ind. Crops Prod., 77, 499-507 (2015). https://doi.org/10.1016/j.indcrop.2015.09.045
  18. M. G. Evandri, L. Battinelli, C. Daniele, S. Mastrangelo, P. Bolle, and G. Mazzanti, The antimutagenic activity of Lavandula angustifolia (lavender) essential oil in the bacterial reverse mutation assay, Food Chem. Toxicol., 43(9), 1381-1387 (2005). https://doi.org/10.1016/j.fct.2005.03.013
  19. V. Hajhashemi, A. Ghannadi, and B. Sharif, Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill., J. Ethnopharmacol., 89(1), 67-71 (2003). https://doi.org/10.1016/S0378-8741(03)00234-4
  20. R. Baptista, A. Madureira, R. Jorge, R. Ado, A. Duarte, N. Duarte, M. M. Lopes, and G. Teixeira, Antioxidant and antimycotic activities of two native Lavandula Species from portugal, Evid. Based Complement. Alternat. Med., 2015, 1-10 (2015).