DOI QR코드

DOI QR Code

Comparison of Image Uniformity with Photon Counting and Conventional Scintillation Single-Photon Emission Computed Tomography System: A Monte Carlo Simulation Study

  • Kim, Ho Chul (Department of Radiological Science, Eulji University) ;
  • Kim, Hee-Joung (Department of Radiological Science, Yonsei University) ;
  • Kim, Kyuseok (Department of Radiological Science, Yonsei University) ;
  • Lee, Min-Hee (Department of Biomedical Engineering, Yonsei University) ;
  • Lee, Youngjin (Department of Radiological Science, Eulji University)
  • Received : 2016.06.03
  • Accepted : 2016.12.05
  • Published : 2017.08.25

Abstract

To avoid imaging artifacts and interpretation mistakes, an improvement of the uniformity in gamma camera systems is a very important point. We can expect excellent uniformity using cadmium zinc telluride (CZT) photon counting detector (PCD) because of the direct conversion of the gamma rays energy into electrons. In addition, the uniformity performance such as integral uniformity (IU), differential uniformity (DU), scatter fraction (SF), and contrast-to-noise ratio (CNR) varies according to the energy window setting. In this study, we compared a PCD and conventional scintillation detector with respect to the energy windows (5%, 10%, 15%, and 20%) using a $^{99m}Tc$ gamma source with a Geant4 Application for Tomography Emission simulation tool. The gamma camera systems used in this work are a CZT PCD and NaI(Tl) conventional scintillation detector with a 1-mm thickness. According to the results, although the IU and DU results were improved with the energy window, the SF and CNR results deteriorated with the energy window. In particular, the uniformity for the PCD was higher than that of the conventional scintillation detector in all cases. In conclusion, our results demonstrated that the uniformity of the CZT PCD was higher than that of the conventional scintillation detector.

Keywords

References

  1. R.J. Jaszczak, R.E. Goleman, C.B. Lim, SPECT: single photon emission computed tomography, IEEE Trans. Nucl. Sci. NS-27 (1980) 1137-1153.
  2. Y.J. Lee, H.J. Ryu, S.W. Lee, S.J. Park, H.J. Kim, Comparison of ultra-high-resolution parallel-hole collimator materials based on the CdTe pixelated semiconductor SPECT system, Nucl. Instrum. Methods Phys. Res. A 713 (2013) 33-39. https://doi.org/10.1016/j.nima.2013.03.014
  3. M.T. Madsen, Recent advances in SPECT imaging, J. Nucl. Med. 48 (2007) 661-673. https://doi.org/10.2967/jnumed.106.032680
  4. Y.-J. Lee, S.-J. Park, D.-H. Kim, H.-J. Kim, Optimization of the SPECT systems based on a CdTe pixelated semiconductor detector using novel parallel-hole collimators, J. Instrum. 9 (2014) C05057. https://doi.org/10.1088/1748-0221/9/05/C05057
  5. C.L. Melcher, J.S. Schweitzer, R.A. Manente, C.A. Peterson, Applications of single crystals in oil well logging, J. Cryst. Growth 109 (1991) 37-42. https://doi.org/10.1016/0022-0248(91)90155-X
  6. T.E. Peterson, L.R. Furenlid, SPECT detectors: the Anger Camera and beyond, Phys. Med. Biol. 7 (2011) R145-R182.
  7. M.A.K. Abdelhalim, R.A.-M. Rizk, H.I. Farag, S.M. Reda, Effect of energy window width on planer and SPECT image uniformity, J. King Saud Univ. 21 (2009) 145-150. https://doi.org/10.1016/j.jksus.2009.06.001
  8. C. Scheiber, CdTe and CdZnTe detectors in nuclear medicine, Nucl. Instrum. Methods Phys. Res. A 448 (2000) 513-524. https://doi.org/10.1016/S0168-9002(00)00282-5
  9. A. Abe, N. Takahashi, J. Lee, T. Oka, K. Shizukuishi, T. Kikuchi, T. Inoue, M. Jimbo, H. Ryuo, C. Bickel, Performance evaluation of a hand-held, semiconductor (CdZnTe)-based gamma camera, Eur. J. Nucl. Med. Mol. Imaging 30 (2003) 805-811. https://doi.org/10.1007/s00259-002-1067-z
  10. K. Ogawa, M. Muraishi, Feasibility study on an ultra-high-resolution SPECT with CdTe detectors, IEEE Trans. Nucl. Sci. 57 (2010) 17-24. https://doi.org/10.1109/TNS.2009.2034460
  11. Y. Lee, H.-J. Kim, Performance evaluation of a small CZT pixelated semiconductor gamma camera system with a newly designed stack-up parallel-hole collimator, Nucl. Instrum. Methods Phys. Res. A 794 (2015) 54-61. https://doi.org/10.1016/j.nima.2015.05.007
  12. T. Onodera, K. Hitomi, T. Shoji, Y. Hiratate, Pixellated thallium bromide detectors for gamma-ray spectroscopy and imaging, Nucl. Instrum. Methods Phys. Res. A 525 (2004) 199-204. https://doi.org/10.1016/j.nima.2004.03.046
  13. A. Konik, M.T. Madsen, J.J. Sunderland, GATE simulations of small animal SPECT for determination of scatter fraction as a function of object size, IEEE Trans. Nucl. Sci. 59 (2012) 1887-1891. https://doi.org/10.1109/TNS.2012.2205403
  14. S. Stute, T. Carlier, K. Cristina, C. Noblet, A. Martineau, B. Hutton, L. Barnden, I. Buvat, Monte Carlo simulations of clinical PET and SPECT scans: impact of the input data on the simulated images, Phys. Med. Biol. 56 (2011) 6441-6457. https://doi.org/10.1088/0031-9155/56/19/017
  15. J.S. Fleming, Evaluation of a technique for simulation of gamma camera images, Phys. Med. Biol. 41 (1996) 1855-1861. https://doi.org/10.1088/0031-9155/41/9/019
  16. S. Jan, D. Benoit, E. Becheva, T. Carlier, F. Cassol, P. Descourt, T. Frisson, L. Grevillot, L. Guigues, L. Maigne, C. Morel, Y. Perrot, N. Rehfeld, D. Sarrut, D.R. Schaart, S. Stute, U. Pietrzyk, D. Visvikis, N. Zahra, I. Buvat, GATE V6: a major enhancement of the GATE simulation platform enabling modelling of CT and radiotherapy, Phys. Med. Biol. 56 (2011) 881-901. https://doi.org/10.1088/0031-9155/56/4/001
  17. P.-H. Jeon, C.-L. Lee, D.-H. Kim, Y.-J. Lee, S.-S. Jeon, H.-J. Kim, Dose reduction and image quality optimizations in CT of pediatric and adult patients: phantom studies, J. Instrum. 9 (2014) P03013. https://doi.org/10.1088/1748-0221/9/03/P03013
  18. J.-H. Kim, Y. Choi, K.-S. Joo, B.-S. Sihn, J.-W. Chong, S.E. Kim, K.H. Lee, Y.S. Choe, B.-T. Kim, Development of a miniature scintillation camera using an NaI(Tl) scintillator and PSPMT for scintimammography, Phys. Med. Biol. 45 (2000) 3481-3488. https://doi.org/10.1088/0031-9155/45/11/326
  19. M. Moszynski, J. Zalipska, M. Balcerzyk, M. Kapusta, W. Mengesha, J.D. Valentine, Intrinsic energy resolution of NaI(Tl), Nucl. Instrum. Methods Phys. Res. A 484 (2002) 259-269. https://doi.org/10.1016/S0168-9002(01)01964-7

Cited by

  1. X-ray image denoising with fast non-local means (FNLM) approach using acceleration function in CdTe semiconductor photon counting detector (PCD): Monte Carlo simulation study vol.172, pp.None, 2017, https://doi.org/10.1016/j.ijleo.2018.07.051
  2. Performance evaluation of noise reduction algorithm with median filter using improved thresholding method in pixelated semiconductor gamma camera system: A numerical simulation study vol.51, pp.2, 2017, https://doi.org/10.1016/j.net.2018.10.005
  3. Effects of total variation regularization noise reduction algorithm in improved K-edge log-subtraction X-ray images with photon-counting cadmium telluride detectors vol.206, pp.None, 2017, https://doi.org/10.1016/j.ijleo.2020.164380