DOI QR코드

DOI QR Code

Optimization of Siderophore Production by Bacillus sp. PZ-1 and Its Potential Enhancement of Phytoextration of Pb from Soil

  • Yu, Sumei (College of Resources and Environmental Science, Northeast Agricultural University) ;
  • Teng, Chunying (College of Resources and Environmental Science, Northeast Agricultural University) ;
  • Bai, Xin (College of Resources and Environmental Science, Northeast Agricultural University) ;
  • Liang, Jinsong (College of Resources and Environmental Science, Northeast Agricultural University) ;
  • Song, Tao (College of Resources and Environmental Science, Northeast Agricultural University) ;
  • Dong, Liying (College of Resources and Environmental Science, Northeast Agricultural University) ;
  • Jin, Yu (College of Resources and Environmental Science, Northeast Agricultural University) ;
  • Qu, Juanjuan (College of Resources and Environmental Science, Northeast Agricultural University)
  • Received : 2017.05.08
  • Accepted : 2017.06.16
  • Published : 2017.08.28

Abstract

In this study, the siderophore-producing characteristics and conditions of Bacillus sp. PZ-1 were investigated and the enhancement of siderophores on Pb uptake and translocation in Brassica juncea were determined. Results of single factor experiment showed that glucose, pH, and $Pb(NO_3)_2$ could stimulate PZ-1 growth and siderophore production. The maximum siderophore production of 90.52% siderophore units was obtained by response surface methodology optimization at the glucose concentration of 21.84 g/l, pH 6.18, and $Pb(NO_3)_2$ concentration of $245.04{\mu}mol/l$. The type of siderophore was hydroxamate and its concentration in the fermentation broth amounted to $32.24{\mu}g/ml$. Results of pot experiments indicated that the siderophores enhanced B. juncea to assimilate more Pb from soil with the uptake ratio from 1.04 to 2.74, and to translocate more Pb from underground to overground with the TF values from 1.21 to 1.48. The results revealed that Bacillus sp. PZ-1 could produce abundant siderophores and might be potentially used to augment the phytoextraction of Pb from soil.

Keywords

References

  1. Rajkumar M, Ae N, Prasad M, Freitas H. 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 28: 142-149. https://doi.org/10.1016/j.tibtech.2009.12.002
  2. Vraspir JM, Butler A. 2009. Chemistry of marine ligands and siderophores. Annu. Rev. Mater. Sci. 1: 43-63. https://doi.org/10.1146/annurev.marine.010908.163712
  3. Neilands JB. 1995. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 270: 26723-26726. https://doi.org/10.1074/jbc.270.45.26723
  4. Saha M, Sarkar N, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi B. 2016. Microbial siderophores and their potential applications: a review. Environ. Sci. Pollut. Res. 23: 3984-3999. https://doi.org/10.1007/s11356-015-4294-0
  5. Ma Y, Oliveira RS, Wu L, Luo Y, Rajkumar, M. 2015. Inoculation with metal-mobilizing plant growth-promoting rhizobacterium Bacillus sp. SC2b and its role in rhizoremediation. J. Toxicol. Environ. Health 78: 931-944. https://doi.org/10.1080/15287394.2015.1051205
  6. Rajkumar M, Freitas F. 2008. Effects of inoculation of plantgrowth promoting bacteria on Ni uptake by Indian mustard. Bioresour. Technol. 99: 3491-3498. https://doi.org/10.1016/j.biortech.2007.07.046
  7. Babu AG, Kim JD, Oh BT. 2013. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J. Hazard. Mater. 250-251: 477-483. https://doi.org/10.1016/j.jhazmat.2013.02.014
  8. Bendale MS, Chaudhari BL, Chincholkar SB. 2009. Influence of environmental factors on siderophore production by Streptomyces fulvissimus ATCC 27431. Curr. Trends Biotechnol. Pharm. 3: 362-371.
  9. Santos S, Neto IFF, Machado MD, Soares HMVM, Soares EV. 2014. Siderophore production by Bacillus megaterium: effect of growth phase and cultural conditions. Appl. Biochem. Biotechnol. 172: 549-560. https://doi.org/10.1007/s12010-013-0562-y
  10. Shaikh SS, Wani SJ, Sayyed RZ. 2016. Statistical-based optimization and scale-up of siderophore production process on laboratory bioreactor. 3 Biotech. 6: 69.
  11. Sayyed RZ, Badgujar MD, Sonawane HM, Mhaske MM, Chincholkar SB. 2005. Production of microbial iron chelators (siderophores) by fluorescent pseudomonads. Indian J. Biotechnol. 4: 484-490.
  12. Dimkpa CO, Svatos A, Dabrowska P, Schmidt A, Boland W, Kothe E. 2008. Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74: 19-25. https://doi.org/10.1016/j.chemosphere.2008.09.079
  13. Gaonkar T, Bhosle S. 2013. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. Chemosphere 93: 1835-1843. https://doi.org/10.1016/j.chemosphere.2013.06.036
  14. Braud A, Hoegy F, Jezequel K, Lebeau T, Schalk IJ. 2009. New insights into the metal specificity of the Pseudomonas aeruginosa pyoverdine-iron uptake pathway. Environ. Microbiol. 11: 1079-1091. https://doi.org/10.1111/j.1462-2920.2008.01838.x
  15. Ren G, Jin Y, Zhang C, Gu H, Qu J. 2015. Characteristics of Bacillus sp. PZ-1 and its biosorption to Pb(II). Ecotoxicol. Environ. Saf. 117: 141-148. https://doi.org/10.1016/j.ecoenv.2015.03.033
  16. Payne SM. 1994. Detection, isolation and characterization of siderophores. Methods Enzymol. 235: 329.
  17. Csaky TZ. 1948. On the estimation of bound hydroxylamine in biological materials. Acta Chem. Scand. 2: 450-454. https://doi.org/10.3891/acta.chem.scand.02-0450
  18. Arnow LE. 1937. Colorimetric determination of the components of 3,4-dihydroxy phenylalanine tyrosine mixtures. Circ. J. 118: 531-537.
  19. Shenker M, Oliver I, Helmann M, Hadar Y, Chen Y. 1992. Utilization by tomatoes of iron mediated by a siderophore produced by Rhizopus arrhizus. J. Plant Nutr. 15: 2173-2182. https://doi.org/10.1080/01904169209364466
  20. Kuchenbuch R, Jung J. 1988. Changes in root-shoot ratio and ion uptake of maize (Zea mays L.) from soil as influenced by a plant growth regulator. Plant Soil 109: 151-157. https://doi.org/10.1007/BF02202079
  21. Mendez MO, Maier RM. 2008. Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ. Health Perspect. 116: 278-283.
  22. Manwar AV, Khandelwal SR, Chaudhari BL, Meyer JM, Chincholkar SB. 2004. Siderophore production by a marine Pseudomonas aeruginosa and its antagonistic action against phytopathogenic fungi. Appl. Biochem. Biotechnol. 118: 243. https://doi.org/10.1385/ABAB:118:1-3:243
  23. Chakraborty U, Chankrabopty B, Basnet M. 2006. Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J. Basic Microbiol. 46: 186-195. https://doi.org/10.1002/jobm.200510050
  24. Lebeau T, Braud A, Jezequel K. 2008. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ. Pollut. 153: 497-522. https://doi.org/10.1016/j.envpol.2007.09.015
  25. Fuloria A, Saraswat S, Rai JPN. 2009. Effect of Pseudomonas fluorescens on metal phytoextraction from contaminated soil by Brassica juncea. Chem. Ecol. 25: 385-396. https://doi.org/10.1080/02757540903325096
  26. Sullivan TS, Ramkissoon S, Garrison VH, Ramsubhag A, Thies JE. 2012. Siderophore production of African dust microorganisms over Trinidad and Tobago. Aerobiologia 28: 391-401. https://doi.org/10.1007/s10453-011-9243-x
  27. Xiao R, Kisaalita WS. 1998. Fluorescent pseudomonad pyoverdines bind and oxidize ferrous ion. Appl. Environ. Microbiol. 64: 1472-1476.
  28. Mahmoud ALE, Abd-Alla MH. 2011. Siderophore production by some microorganisms and their effect on Bradyrhizobium-Mung bean symbiosis. Int. J. Agric. Biol. 3: 157-162.
  29. Yu X, Ai C, Xin L, Zhou G. 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. Eur. J. Soil Biol. 47: 138-145. https://doi.org/10.1016/j.ejsobi.2010.11.001
  30. Rachid D, Ahmed B. 2005. Effect of iron and growth inhibitors on siderophores production by Pseudomonas fluorescens. Afr. J. Biotechnol. 4: 697-702. https://doi.org/10.5897/AJB2005.000-3129
  31. Naik MM, Dubey SK. 2011. Lead-enhanced siderophore production and alteration in cell morphology in a Pbresistant Pseudomonas aeruginosa strain 4EA. Curr. Microbiol. 62: 409-414. https://doi.org/10.1007/s00284-010-9722-2
  32. Clarke SE, Stuart J, Sanders-Loehr J. 1987. Induction of siderophore activity in Anabaena spp. and its moderation of copper toxicity. Appl. Environ. Microbiol. 53: 917-922.
  33. Waldron KJ, Tottey S, Yanagisawa S, Dennison C, Robinson NJ. 2007. A periplasmic iron-binding protein contributes toward inward copper supply. J. Biol. Chem. 282: 3837-3846.
  34. Sinha S, Mukherjee SK. 2008. Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr. Microbiol. 56: 55-60. https://doi.org/10.1007/s00284-007-9038-z
  35. Rossbach S, Wilson TL, Kukuk ML, Carty HA. 2000. Elevated zinc induces siderophore biosynthesis genes and a zntA-like gene in Pseudomonas fluorescens. FEMS Microbiol. Lett. 191: 61-70. https://doi.org/10.1111/j.1574-6968.2000.tb09320.x
  36. Duffy BK, Defago G. 1999. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 65: 2429-2438.
  37. Abd-Alla MH. 1998. Growth and siderophore production in vitro of Bradyrhizobium (Lupin) strains under iron limitation. Folia Microbiol. 44: 196-200.
  38. Saha R, Saha N, Donofrio RS, Bestervelt LL. 2013. Microbial siderophores: a mini review. J. Basic. Microbiol. 53: 303-317. https://doi.org/10.1002/jobm.201100552
  39. Federspiel A, Schuler R, Haselwandter K. 1991. Effect of pH, L-ornithine and L-proline on the hydroxamate siderophore production by Hymenoscyphus ericae, a typical ericoid mycorrhizal fungus. Plant Soil 130: 259-261. https://doi.org/10.1007/BF00011881
  40. Ugwu DI, Ezema BE, Eze FU, Ayogu JI, Ezema CG, Ugwuja DI. 2014. Synthesis and biological applications of hydroxamates. Cheminform 4: 26-51.
  41. Wu CH, Wood TK, Mulchandani A, Chen W. 2006. Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl. Environ. Microbiol. 72: 1129-1134. https://doi.org/10.1128/AEM.72.2.1129-1134.2006
  42. Gadd GM. 2004. Microbial influence on metal mobility and application for bioremediation. Geoderma 122: 109-119. https://doi.org/10.1016/j.geoderma.2004.01.002
  43. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32: 429-448. https://doi.org/10.1016/j.biotechadv.2013.12.005
  44. Ernst WH. 2000. Evolution of metal hyperaccumulation and phytoremediation hype. New Phytol. 146: 357-358. https://doi.org/10.1046/j.1469-8137.2000.00669.x
  45. Davies JFT, Puryear JD, Newton RJ, Egilla JN, Saraiva Grossi JA. 2001. Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J. Plant Physiol. 158: 777-786. https://doi.org/10.1078/0176-1617-00311
  46. Compant S, Clement C, Sessitsch A. 2010. Plant growthpromoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42: 669-678. https://doi.org/10.1016/j.soilbio.2009.11.024
  47. Ahemad M, Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J. King Saud Univ. Sci. 26: 1-20. https://doi.org/10.1016/j.jksus.2013.05.001

Cited by

  1. Cefiderocol: a novel siderophore cephalosporin vol.27, pp.2, 2018, https://doi.org/10.1080/13543784.2018.1426745
  2. Biochemical and Biodiversity Insights into Heavy Metal Ion-Responsive Transcription Regulators for Synthetic Biological Heavy Metal Sensors vol.29, pp.10, 2017, https://doi.org/10.4014/jmb.1908.08002
  3. 토양에서 분리한 Pseudomonas geniculata ANG3, Exiguobacterium acetylicum ANG40 및 Burkholderia stabilis ANG51의 식물 생장촉진 활성 및 식물병 방제활성 vol.48, pp.1, 2017, https://doi.org/10.4014/mbl.1906.06002
  4. Siderophore Production by Rhizosphere Biological Control Bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and Its Antifungal Effects on Candida albicans vol.30, pp.5, 2017, https://doi.org/10.4014/jmb.1910.10066
  5. Genome-guided insights of tropical Bacillus strains efficient in maize growth promotion vol.96, pp.9, 2017, https://doi.org/10.1093/femsec/fiaa157
  6. Metal binding ability of microbial natural metal chelators and potential applications vol.37, pp.9, 2020, https://doi.org/10.1039/c9np00058e
  7. 잠재적 미생물 농약으로서 다양한 식물성장 촉진 활성을 가진 siderophore 생산 세균의 분리와 특성 vol.29, pp.9, 2020, https://doi.org/10.5322/jesi.2020.29.9.925
  8. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review vol.743, pp.None, 2017, https://doi.org/10.1016/j.scitotenv.2020.140682
  9. Bacillus cereus Improves Performance of Brazilian Green Dwarf Coconut Palms Seedlings With Reduced Chemical Fertilization vol.12, pp.None, 2017, https://doi.org/10.3389/fpls.2021.649487
  10. Rhizosphere Microbial Communities and Heavy Metals vol.9, pp.7, 2017, https://doi.org/10.3390/microorganisms9071462
  11. Critical review on microbial community during in-situ bioremediation of heavy metals from industrial wastewater vol.24, pp.None, 2021, https://doi.org/10.1016/j.eti.2021.101826
  12. Brassica Species in Phytoextractions: Real Potentials and Challenges vol.10, pp.11, 2017, https://doi.org/10.3390/plants10112340
  13. 2D distribution of Pseudomonas fluorescens activities at the soil-root interface of sunflower grown on vineyard soils: Effects on copper uptake vol.163, pp.None, 2017, https://doi.org/10.1016/j.soilbio.2021.108462