DOI QR코드

DOI QR Code

Changes in Free and Bound Forms of Bioactive Compound Profiles of Adzuki Bean with Germination

발아에 따른 팥의 유리형 및 결합형 기능성분 변화

  • Kim, Min Young (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Jang, Gwi Yeong (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Oh, Nam Seok (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Baek, So Yune (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Kim, Kil Ho (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Kim, Kyung Mi (National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Hongsik (Department of Crop Science, Chungbuk National University) ;
  • Lee, Junsoo (Department of Food Science and Biotechnology, Chungbuk National University) ;
  • Jeong, Heon Sang (Department of Food Science and Biotechnology, Chungbuk National University)
  • 김민영 (충북대학교 식품생명공학과) ;
  • 장귀영 (충북대학교 식품생명공학과) ;
  • 오남석 (충북대학교 식품생명공학과) ;
  • 백소윤 (충북대학교 식품생명공학과) ;
  • 김길호 (충북대학교 식품생명공학과) ;
  • 김경미 (농촌진흥청 국립농업과학원) ;
  • 김홍식 (충북대학교 식물자원학과) ;
  • 이준수 (충북대학교 식품생명공학과) ;
  • 정헌상 (충북대학교 식품생명공학과)
  • Received : 2017.05.12
  • Accepted : 2017.07.07
  • Published : 2017.08.31

Abstract

This study was performed to investigate the changes between free and bound forms of bioactive compounds in germinated adzuki bean. Adzuki bean was germinated at $25^{\circ}C$ for 6 days, and then free and bound forms of bioactive compounds were extracted. Total free polyphenol and flavonoid contents in of raw adzuki bean increased from 0.91 mg/g and 0.60 mg/g in before germination to 2.37 mg/g and 3.03 mg/g in at 6 days after germination, respectively. Bound polyphenol, flavonoid, and phenolic acid contents also increased with increasing germination periods, whereas bound polyphenol and flavonoid contents slightly reduced in at 2 days after germination. The total phenolic acid contents, including ferulic acid, veratric acid, hesperidin, salicylic acid, naringenin, and hesperidin, increased during germination, and germination process can convert compounds to phenolic acid via anabolism and catabolism. Total anthocyanin and anthocyanidin contents of adzuki bean decreased during germination due to hydration by water during soaking or enzyme activation of anthocyanase during germination. These results suggest that the germination process increased utilization of functional compounds such as phenolic compound and isoflavones in black soybean.

본 연구에서는 발아에 의한 팥의 기능성분 변화를 살펴보기 위하여 6일 동안 발아시키면서 유리형 및 결합형 폴리페놀, 플라보노이드, 페놀산 및 안토시아닌의 변화를 분석하였다. 유리형 폴리페놀 및 플라보노이드 함량은 발아기간이 증가함에 따라 각각 약 2.6배 및 5배 정도 증가하였으며, 결합형 폴리페놀 및 플라보노이드 함량은 발아 초기 감소하였다가 발아 3일 및 2일 이후 각각 증가하였다. 발아기간에 따른 구성 페놀산의 변화의 경우 ferulic acid, veratric acid, hesperidin, salicylic acid, naringenin 및 hesperidin과 총 페놀산은 유리형 및 결합형 페놀산 함량이 모두 증가하였지만, 안토시아닌 및 안토시아니딘은 침지 및 발아과정에서 손실되어 감소하였다. 본 연구 결과 팥을 발아시킬 경우 폴리페놀, 플라보노이드 및 페놀산 함량이 증가함에 따라 팥에 함유된 기능성분의 이용성을 증대시키기 위해서는 발아공정의 적용이 효과적이라고 판단된다.

Keywords

References

  1. Rho CW, Son SY, Hong ST, Lee KH, Ryu IM. 2003. Agronomic characters of Korean adzuki beans (Vigna angularis (Willd.) Ohwi & Ohashi). Korean J Plant Res 16: 147-154.
  2. Chang KY, Han KS, Park JC. 1968. Studies on the selection in adzuki bean breeding. III. Phenotypic and genotypic correlations among some characters in the population of adzuki bean varieties. Res Bul Chinju Agric Col 7: 39-44.
  3. Choi SY, Jeong YJ, Lee SJ, Chi OH, Chegal SA. 2002. Food and health for modern people. Dongmyungsa, Seoul, Korea. p 244-246.
  4. Yoshida K, Sato Y, Okuno R, Kameda K, Isobe M, Kondo T. 1996. Structural analysis and measurement of anthocyanins from colored seed coats of Vigna, Phaseolus, and Glycine legumes. Biosci Biotechnol Biochem 60: 589-593. https://doi.org/10.1271/bbb.60.589
  5. Ariga T, Koshiyama I, Fukushima D. 1988. Antioxidative properties of procyanidins B-1 and B-3 from azuki beans in aqueous systems. Agric Biol Chem 52: 2717-2722.
  6. Koide T, Hashimoto Y, Kamei H, Kojima T, Hasegawa M, Terabe K. 1997. Antitumor effect of anthocyanin fractions extracted from red soybeans and red beans in vitro and in vivo. Cancer Biother Radiopharm 12: 277-280.
  7. Lee YR, Kim JY, Woo KS, Hwang IG, Kim KH, Kim KJ, Kim JH, Jeong HS. 2007. Changes in the chemical and functional components of Korean rough rice before and after germination. Food Sci Biotechnol 16: 1006-1010.
  8. Ko JY, Song SB, Lee JS, Kang JR, Seo MC, Oh BG, Kwak DY, Nam MH, Jeong HS, Woo KS. 2011. Changes in chemical components of foxtail millet, proso millet, and sorghum with germination. J Korean Soc Food Sci Nutr 40: 1128-1135. https://doi.org/10.3746/jkfn.2011.40.8.1128
  9. Lee EH, Kim CJ. 2008. Nutritional changes of buckwheat during germination. Korean J Food Cult 23: 121-129.
  10. Chung DS, Kim HK. 1998. Changes of protein and lipid composition during germination of Perilla frutescens seeds. Korean J Life Sci 8: 318-325.
  11. Kim JS, Kim JG, Kim WJ. 2004. Changes in isoflavone and oligosaccharides of soybeans during germination. Korean J Food Sci Technol 36: 294-298.
  12. Nardini M, Ghiselli A. 2004. Determination of free and bound phenolic acids in beer. Food Chem 84: 137-143. https://doi.org/10.1016/S0308-8146(03)00257-7
  13. Chandrasekara A, Shahidi F. 2011. Bioactivities and antiradical properties of millet grains and hulls. J Agric Food Chem 59: 9563-9571. https://doi.org/10.1021/jf201849d
  14. Acosta-Estrada BA, Gutierrez-Uribe JA, Sema-Saldivar SO. 2014. Bound phenolics in foods, a review. Food Chem 152: 46-55. https://doi.org/10.1016/j.foodchem.2013.11.093
  15. Lopez A, El-Naggar T, Duenas M, Ortega T, Estrella I, Hernandez T, Gomez-Serranillos MP, Palomino OM, Carretero ME. 2013. Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.). Food Chem 138: 547-555. https://doi.org/10.1016/j.foodchem.2012.10.107
  16. Seo MC, Ko JY, Song SB, Lee JS, Kang JR, Kwak DY, Oh BG, Yoon YN, Nam MH, Jeong HS, Woo KS. 2011. Antioxidant compounds and activities of foxtail millet, proso millet and sorghum with different pulverizing methods. J Korean Soc Food Sci Nutr 40: 790-797. https://doi.org/10.3746/jkfn.2011.40.6.790
  17. Jung KH, Hong HD, Cho CW, Lee MY, Choi UK, Kim YC. 2012. Phenolic acid composition and antioxidative activity of red ginseng prepared by high temperature and high pressure process. Korean J Food Nutr 25: 827-832. https://doi.org/10.9799/ksfan.2012.25.4.827
  18. Zielinski H, Kozlowska H, Lewczuk B. 2001. Bioactive compounds in the cereal grains before and after hydrothermal processing. Innovaive Food Sci Emerging Technol 2: 159-169. https://doi.org/10.1016/S1466-8564(01)00040-6
  19. Dewanto V, Wu X, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50: 4959-4964. https://doi.org/10.1021/jf0255937
  20. Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  21. Macz-Pop GA, Rivas-Gonzalo JC, Perez-Alonso JJ, Gonzalez-Parmas AM. 2006. Natural occurrence of free anthocyanin aglycones in beans (Phaseolus vulgaris L.). Food Chem 94: 448-456. https://doi.org/10.1016/j.foodchem.2004.11.038
  22. Giusti MM, Wrolstad RE. 1996. Characterization of red radish anthocyanins. J Food Sci 61: 322-326. https://doi.org/10.1111/j.1365-2621.1996.tb14186.x
  23. Choung MG. 2008. Optimal HPLC condition for simultaneous determination of anthocyanins in black soybean seed coats. Korean J Crop Sci 54: 359-368.
  24. Woo KS, Song SB, Ko JY, Lee JS, Jung TW, Jeong HS. 2015. Changes in antioxidant contents and activities of adzuki beans according to germination time. J Korean Soc Food Sci Nutr 44: 687-694. https://doi.org/10.3746/jkfn.2015.44.5.687
  25. Kim MY, Jang GY, Lee Y, Li M, Ji YM, Yoon N, Lee SH, Kim KM, Lee J, Jeong HS. 2016. Free and bound form bioactive compound profiles in germinated black soybean (Glycine max L.). Food Sci Biotechnol 25: 1551-1559. https://doi.org/10.1007/s10068-016-0240-2
  26. Ti H, Zhang R, Zhang M, Li Q, Wei Z, Zhang Y, Tang X, Deng Y, Liu L, Ma Y. 2014. Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages. Food Chem 161: 337-344. https://doi.org/10.1016/j.foodchem.2014.04.024
  27. Tian S, Nakamura K, Cui T, Kayahara H. 2005. High-performance liquid chromatographic determination of phenolic compounds in rice. J Chromatogr A 1063: 121-128. https://doi.org/10.1016/j.chroma.2004.11.075
  28. Rice-Evans C, Miller N, Paganga G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci 2: 152-159. https://doi.org/10.1016/S1360-1385(97)01018-2
  29. Middleton E, Kandaswami C. 1994. Potential health-promoting properties of citrus flavonoids. Food Technol 48: 115-119.
  30. Yang F, Basu TK, Ooraikul B. 2001. Studies on germination conditions and antioxidant contents of wheat grain. Int J Food Sci Nutr 52: 319-330. https://doi.org/10.1080/09637480120057567
  31. Mattila P, Pihlava JM, Hellstrom J. 2005. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J Agric Food Chem 53: 8290-8295. https://doi.org/10.1021/jf051437z
  32. Temple NJ. 2000. Antioxidants and disease: More questions than answers. Nutr Res 20: 449-459. https://doi.org/10.1016/S0271-5317(00)00138-X
  33. Lin LZ, Hamly JM, Pastor-Corrales MS, Luthria DL. 2008. The polyphenolic profiles of common bean (Phaseolus vulgaris L.). Food Chem 107: 399-410. https://doi.org/10.1016/j.foodchem.2007.08.038