DOI QR코드

DOI QR Code

Improved Antibacterial Effect of Blending Essential Oils

블렌딩 에센션오일의 항균효과 증진

  • Kwon, Pil Seung (Department of Clinical Laboratory Science, Wonkwang Health Science University) ;
  • Kim, Dae-Jung (Department of Laboratory Medicine, Bundang Jesaeng Hospital) ;
  • Park, Ho (Department of Clinical Laboratory Science, Wonkwang Health Science University)
  • 권필승 (원광보건대학교 임상병리과) ;
  • 김대중 (분당재생병원 진단검사의학과) ;
  • 박호 (원광보건대학교 임상병리과)
  • Received : 2017.05.18
  • Accepted : 2017.06.19
  • Published : 2017.09.30

Abstract

Essential oil from herb is known to exert pharmacological effects on the human body. In this study we investigated the antibacterial activity of 4 essential oils (teetree, rosemary, melisa, and lavender), as well as the blended mixture oil of teetree, rosemary, and melisa (TRM) on three bacteria, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Antibacterial analysis was performed using the standard disk diffusion method, and minimum inhibition concentration was determined by the broth microdilution method with different concentrations of essential oils (0.5, 1, 2 and 3 mg/mL). After incubation at $37^{\circ}C$ for 24 h, the antibacterial activity was assessed by measuring the zone of growth inhibition surrounding the disks. Herb oil with the inhibition zones showed varied values ranging from6 to 25 mm. However, the components of herb oil of TRM are as highly active as the teetree oil against pathogens, generating large inhibition zones for both gram negative and positive bacteria (13~22 mm and 8 mm inhibition zones). In the analysis for MIC, TRM showed growth-inhibitory effects at 0.0625% for S. aureus and E. coli, and 1.25% for P. aeruginosa. This result demonstrated that the anti-microbial activity of TRM was greater than a single herb oil, including oxacillin, rosemary, and teetrea. As a single herb oil, both rosemary and teetrea also had an anti-microbial effect by itself, and we can expect that the blended oil mixture may exert a synergistic effect against multidrug resistant bacteria, suggesting its future application in natural preservative agents for health food and cosmetics.

식물로부터 유래되는 휘발성 유기 화합물인 에센셜 오일은 인체에 약리효과를 나타낸다고 알려져 있다. 본 연구에서는 화농성 질환과 병독성 질환 비뇨기계통 감염에 나올 수 있는 병원성 세균 Staphylococcus aureus (그람양성알균), Escherichia coli (그람음성막대균), Pseudomonas aeruginosa (그람음성막대균, 극성단모균)을 대상으로 천연 허브 오일 중에 비교적 많이 알려져 있는 라벤더(lavender), 티트리(tea tree), 로즈마리(rosemary), 멜리사(melisa) 4종류의 단일 오일과 비교해, 티트리와 로즈마리, 멜리사를 블렌딩하였을 때 항균력이 상승되는 효과가 있는지 연구하였다. 그 결과 디스크 확산법에서 블렌딩 오일(티트리, 로즈마리, 멜리사)의 경우 단독의 허브오일보다 S. aureus에서18 mm, E. coli 에서 22 mm 와 P. aeruginosa는13 mm의 우수한 항균능력을 확인할 수 있었다. 뿐만 아니라 블렌딩 오일의 경우 최소억제농도(Minimum Inhibitory Concentrations, MIC) 분석에서 S. aureus, E. coli 에서는 0.3125%에서, P. aeruginosa는 1.25%에서 성장억제효과가 확인되었다. 따라서 본 실험에서는 블렌딩 오일이 Oxacillin과 로즈마리, 티트리보다 항균효과가 우수한 것으로 증명되어 단독의 허브오일보다 블렌딩 오일이 우수한 항균력을 나타나는 것을 확인할 수 있었다. 그러므로 허브의 블렌딩을 활용하면 다제 내성균에 대한 항균시너지효과를 발휘할 수 있음을 입증했을 뿐만 아니라 향후 천연보존제와 건강기능성 식품 및 화장품에 활용 가능성을 기대해본다.

Keywords

References

  1. Rapper S, Kamatou G, Viljoen A, van Vuuren S. The in vitro antimicrobial activity of lavandula angustifolia essential oil in combination with other aroma-therapeutic oils. Evid Based Complement Alternat Med. 2013;2013:852049.
  2. Mehdi JH, Rudabeh SM, Hassan S. Analysis of iranian rosemary essential oil: application of gas chromatography-mass spectrometry combined with chemometrics. J Chromatogr A. 2011;1218(18):2569-2576. https://doi.org/10.1016/j.chroma.2011.02.048
  3. Aruoma OI, Spencer JP, Rossi R, Aeschbach R, Khan A, Mahmood N, et al. An evaluation of the antioxidant and antiviral action of extracts of rosemary and Provencal herbs. Food Chem Toxicol. 1996;34(5):449-456. https://doi.org/10.1016/0278-6915(96)00004-X
  4. Altinier G, Sosa S, Aquino RP, Mencherini T, Della Loggia R, Tubaro A. Characterization of topical antii-nflammatory compounds in rosmarinus officinalis L. J Agric Food Chem. 2007; 55(5):1718-1723. https://doi.org/10.1021/jf062610+
  5. Singletary K, Macdonald C, Wallig M. Inhibition by rosemary and carnosol of 7.12-dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Lett. 1996;104(1):43-48. https://doi.org/10.1016/0304-3835(96)04227-9
  6. Richheimer SL, Bernart MW, King GA, Kent MC, Bailey DT. Antioxidant activity of lipid soluble phenolic diterpenes from rosemary. J Am Oil Chem Soc. 1996;73(4):507-514. https://doi.org/10.1007/BF02523927
  7. Hammer KA, Carson CF, Riley TV. In-vitro activity of essential oils, inparticular melaleuca alternifolia (tea tree) oil and tea tree oil products, against candida spp. J Antimicrob Chemother. 1998;42(5):591-595. https://doi.org/10.1093/jac/42.5.591
  8. Kazemzadeh R, Nikjou R, Rostamnegad M, Norouzi H. Effect of lavender aromatherapy on menopause hot flushing: A crossover randomized clinical trial. J Chin Med Assoc. 2016;79(9): 489-492. https://doi.org/10.1016/j.jcma.2016.01.020
  9. Sadeghzadeh J, Vakili A, Bandegi AR, Sameni HR, Zahedi Khorasani M, Darabian M. Lavandula reduces heart injury via attenuating tumor necrosis factor-alpha and oxidative stress in a rat model of infarct-like myocardial injury. Cell J. 2017; 19(1):84-93.
  10. Mimica-Dukic N, Bozin B, Sokovic M, Simin N. Antimicrobial and antioxidant activities of Melissa officinalis L. J Agric Food Chem. 2004;52(9):2485-2489. https://doi.org/10.1021/jf030698a
  11. Nicole L. Kavanaugh, Katharina Ribbeck. Selected antimicrobial essential oils eradicate pseudomonas spp. and staphylococcus aureus biofilms. Appl Environ Microbiol. 2012; 78(11):4057-4061. https://doi.org/10.1128/AEM.07499-11
  12. Fortino Solorzano-Santos, Maria Guadalupe Miranda-Novales. Essential oils from aromatic herbs as antimicrobial agents. Current Opinion in Biotechnology. 2012;23(2):136-141. https://doi.org/10.1016/j.copbio.2011.08.005
  13. Rosina Khan, Barira Islam, Mohd Akram, Shazi Shakil, Anis Ahmad, S. Manazir Ali, et al. Antimicrobial activity of five herbal extracts against multi drug resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules. 2009;14(2):586-597. https://doi.org/10.3390/molecules14020586
  14. Park YS. A meta-analysis of the effects of aromatherapy hand massage. Journal of Digital Convergence. 2015;13(1):469-479. https://doi.org/10.14400/JDC.2015.13.1.469
  15. Lodhia MH, Bhatt KR, Thaker VS. Antibacterial activity of essential oils from palmarosa, evening primrose, lavender and tuberose. Indian J Pharm Sci. 2009;71(2):134-136. https://doi.org/10.4103/0250-474X.54278
  16. Chae IG, Kim HJ, Yu MH, Kim HI, Lee IS. Antioxidant and antibacterial activity of commercially available herbs in Korean markets. J Korean Soc Food Sci and Nutr. 2010;39(10):1411-1417. https://doi.org/10.3746/jkfn.2010.39.10.1411
  17. Battaglia S. The complete guide to aromatherapy. 2nd ed. Brisbane: The international center of holistic aromatherapy; 2003. p17-21.
  18. Bassole IH, Juliani HR. Essential oils in combination and their antimicrobial properties. Molecules. 2012; 217(4):3989-4006.
  19. Lee YJ, Park SJ. The effects of strength note program on mental health of university students in convergence age. Journal of Digital Convergence. 2015;13(7):223-228. https://doi.org/10.14400/JDC.2015.13.7.223
  20. Kim BY, Lee CT. Production of phytoncide from korean pine cone waste by steam distillation. Appl chem eng. 2015;26(6): 648-658. https://doi.org/10.14478/ace.2015.1064
  21. Clinical Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard-12th ed, M07-A10. Wayne, PA: Clinical Laboratory Standards Institute; 2015. p27-47.
  22. Clinical Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; Approved standard 26th ed, M100-S22. Wayne, PA: Clinical Laboratory Standards Institute; 2015. p170-180.
  23. Kubo I, Muroi H, Kubo A. Structural functions of antimicrobial long-chain alcohols and phenols. Bioorg Med Chem. 1995;3(7): 873-880. https://doi.org/10.1016/0968-0896(95)00081-Q
  24. Sakanaka S, Juneja LR, Taniguchi M. Antimicrobial effects of green tea polyphenols on thermophilic sporeforming bacteria. J Biosci Bioeng. 2000;90(1):81-85. https://doi.org/10.1016/S1389-1723(00)80038-9
  25. Cho MH, Bae EK, Ha SD, Park JY. Application ofnatural antimicrobials to food industry. Food Sci Ins. 2005;38(2):36-45.
  26. Lee JH, Lee SR. Some physiological activity of phenolicsubstances in plant foods. Korean J Food Sci Technol. 1994;26(3): 317-323.
  27. Topisirovic L, Kojic M, Fira D, Golic N, Strahinic I, Lozo J. Potential of lactic acid bacteria isolated from specific natural niches in food production and preservation. Int J Food Microbiol. 2006;112(3):230-235. https://doi.org/10.1016/j.ijfoodmicro.2006.04.009
  28. Chae IG, Kim HJ, Yu MH, Kim HI, Lee IS. Antioxidant and antibacterial activity of commercially available herbs in Korean markets. J Korean Soc Food Sci Nutr. 2010;39(10):1411-1417. https://doi.org/10.3746/jkfn.2010.39.10.1411
  29. Son SY, Choi HR, Choi EH. Effect of herbs on the growth-inhibition of lactic acid bacteria and quality characteristics of Dongchimi. Korean J Food Sci Technol. 2005;37(2):241-246.
  30. Chung DO, Park ID, Jung HO. Evaluation of functional properties of onion, rosemary and thyme extracts in onion kimchi. Korean J Soc Food Cookery Sci. 2001;17(3):218-223.
  31. Heatley NG. A method for the assay of penicillin. Biochem J. 1944;38(1):61-65. https://doi.org/10.1042/bj0380061
  32. Jorgensen JH, Ferraro MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis. 2009;49(11):1749-1755. https://doi.org/10.1086/647952
  33. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharmaceutical Analysis. 2016;6(2):71-79. https://doi.org/10.1016/j.jpha.2015.11.005
  34. Das K, Tiwari RKS, Shrivastava DK, Techniques for evaluation of medicinal plant products as antimicrobial agents: current methods and future trends. J Med Plants Res. 2010;4(2):104-111.
  35. Nguefack J, Budde BB, Jakobsen M. Five essential oils from aromatic plants of Cameroon: their antibactetial activity and ability to permeabilize the cytoplasmic membrane of Listeria innocua examined by flow cytometry. Letters in Applied Microbiology. 2004;39(5):395-400. https://doi.org/10.1111/j.1472-765X.2004.01587.x
  36. Bouhdid S, Abrinin J, Zhiri A, Espuny MJ, Munresa A. Investigation of functional and morphological changes in pseudomonas aeruginosa and staphylococcus aureus cells induced by origanum compactum essential oil. Journal of Applied Microbiology. 2009;106(5):1558-1568. https://doi.org/10.1111/j.1365-2672.2008.04124.x

Cited by

  1. Anti-bacterial effects of lavender and peppermint oils on Streptococcus mutans vol.42, pp.4, 2017, https://doi.org/10.11149/jkaoh.2018.42.4.210
  2. 티트리 (Melaleuca alternifolia) 추출물의 항균 활성 vol.20, pp.5, 2017, https://doi.org/10.5762/kais.2019.20.5.102