DOI QR코드

DOI QR Code

Intraoperative monitoring of flash visual evoked potential under general anesthesia

  • Received : 2017.01.10
  • Accepted : 2017.01.25
  • Published : 2017.04.01

Abstract

In neurosurgical procedures that may cause visual impairment in the intraoperative period, the monitoring of flash visual evoked potential (VEP) is clinically used to evaluate visual function. Patients are unconscious during surgery under general anesthesia, making flash VEP monitoring useful as it can objectively evaluate visual function. The flash stimulus input to the retina is transmitted to the optic nerve, optic chiasm, optic tract, lateral geniculate body, optic radiation (geniculocalcarine tract), and visual cortical area, and the VEP waveform is recorded from the occipital region. Intraoperative flash VEP monitoring allows detection of dysfunction arising anywhere in the optic pathway, from the retina to the visual cortex. Particularly important steps to obtain reproducible intraoperative flash VEP waveforms under general anesthesia are total intravenous anesthesia with propofol, use of retinal flash stimulation devices using high-intensity light-emitting diodes, and a combination of electroretinography to confirm that the flash stimulus has reached the retina. Relatively major postoperative visual impairment can be detected by intraoperative decreases in the flash VEP amplitude.

Keywords

References

  1. Wright JE, Arden G, Jones BR. Continuous monitoring of the visually evoked response during intra-orbital surgery. Trans Ophthalmol Soc U K 1973; 93: 311-4.
  2. Cedzich C, Schramm J. Monitoring of flash visual evoked potentials during neurosurgical operations. Int Anesthesiol Clin 1990; 28: 165-9. https://doi.org/10.1097/00004311-199002830-00006
  3. Neuloh G. Time to revisit VEP monitoring? Acta Neurochir (Wien) 2010; 152: 649-50. https://doi.org/10.1007/s00701-010-0601-1
  4. Sasaki T, Itakura T, Suzuki K, Kasuya H, Munakata R, Muramatsu H, et al. Intraoperative monitoring of visual evoked potential: introduction of a clinically useful method. J Neurosurg 2010; 112: 273-84. https://doi.org/10.3171/2008.9.JNS08451
  5. Kodama K, Goto T, Sato A, Sakai K, Tanaka Y, Hongo K. Standard and limitation of intraoperative monitoring of the visual evoked potential. Acta Neurochir (Wien) 2010; 152: 643-8. https://doi.org/10.1007/s00701-010-0600-2
  6. American Clinical Neurophysiology Society. Guideline 9B: Guidelines on visual evoked potentials. J Clin Neurophysiol 2006; 23: 138-56. https://doi.org/10.1097/00004691-200604000-00011
  7. Cedzich C, Schramm J, Fahlbusch R. Are flash-evoked visual potentials useful for intraoperative monitoring of visual pathway function? Neurosurgery 1987; 21: 709-15. https://doi.org/10.1227/00006123-198711000-00018
  8. Sato A. Interpretation of the causes of instability of flash visual evoked potentials in intraoperative monitoring and proposal of a recording method for reliable functional monitoring of visual evoked potentials using a light-emitting device. J Neurosurg 2016; 125: 888-97. https://doi.org/10.3171/2015.10.JNS151228
  9. Kamio Y, Sakai N, Sameshima T, Takahashi G, Koizumi S, Sugiyama K, et al. Usefulness of intraoperative monitoring of visual evoked potentials in transsphenoidal surgery. Neurol Med Chir (Tokyo) 2014; 54: 606-11. https://doi.org/10.2176/nmc.oa.2014-0023
  10. Sesma MA, Casagrande VA, Kaas JH. Cortical connections of area 17 in tree shrews. J Comp Neurol 1984; 230: 337-51. https://doi.org/10.1002/cne.902300303
  11. Geisert EE. The projection of the lateral geniculate nucleus to area 18. J Comp Neurol 1985; 238: 101-6. https://doi.org/10.1002/cne.902380109
  12. Celesia GG, Archer CR, Kuroiwa Y, Goldfader PR. Visual function of the extrageniculo-calcarine system in man: relationship to cortical blindness. Arch Neurol 1980; 37: 704-6. https://doi.org/10.1001/archneur.1980.00500600052010
  13. Cusick CG, MacAvoy MG, Kaas JH. Interhemispheric connections of cortical sensory areas in tree shrews. J Comp Neurol 1985; 235: 111-28. https://doi.org/10.1002/cne.902350109
  14. Ciganek L. The EEG response (evoked potential) to light stimulus in man. Electroencephalogr Clin Neurophysiol 1961; 13: 165-72. https://doi.org/10.1016/0013-4694(61)90132-8
  15. Whittingstall K, Wilson D, Schmidt M, Stroink G. Correspondence of visual evoked potentials with FMRI signals in human visual cortex. Brain Topogr 2008; 21: 86-92. https://doi.org/10.1007/s10548-008-0069-y
  16. Whittingstall K, Stroink G, Schmidt M. Evaluating the spatial relationship of event-related potential and functional MRI sources in the primary visual cortex. Hum Brain Mapp 2007; 28: 134-42. https://doi.org/10.1002/hbm.20265
  17. Russ W, Sticher J, Scheld H, Hempelmann G. Effects of hypothermia on somatosensory evoked responses in man. Br J Anaesth 1987; 59: 1484-91. https://doi.org/10.1093/bja/59.12.1484
  18. Zeitlhofer J, Steiner M, Bousek K, Fitzal S, Asenbaum S, Wolner E, et al. The influence of temperature on somatosensory-evoked potentials during cardiopulmonary bypass. Eur Neurol 1990; 30: 284-90. https://doi.org/10.1159/000117382
  19. Russ W, Kling D, Loesevitz A, Hempelmann G. Effect of hypothermia on visual evoked potentials (VEP) in humans. Anesthesiology 1984; 61: 207-10. https://doi.org/10.1097/00000542-198408000-00018
  20. Ledsome JR, Cole C, Sharp-Kehl JM. Somatosensory evoked potentials during hypoxia and hypocapnia in conscious humans. Can J Anaesth 1996; 43: 1025-9. https://doi.org/10.1007/BF03011904
  21. Kobrine AI, Evans DE, Rizzoli HV. Relative vulnerability of the brain and spinal cord to ischemia. J Neurol Sci 1980; 45: 65-72. https://doi.org/10.1016/S0022-510X(80)80007-4
  22. Nagao S, Roccaforte P, Moody RA. The effects of isovolemic hemodilution and reinfusion of packed erythrocytes on somatosensory and visual evoked potentials. J Surg Res 1978; 25: 530-7. https://doi.org/10.1016/0022-4804(78)90141-5
  23. Banoub M, Tetzlaff JE, Schubert A. Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology 2003; 99: 716-37. https://doi.org/10.1097/00000542-200309000-00029
  24. Chi OZ, Field C. Effects of isoflurane on visual evoked potentials in humans. Anesthesiology 1986; 65: 328-30. https://doi.org/10.1097/00000542-198609001-00326
  25. Kameyama Y. Effect of isoflurane and sevoflurane on evoked potentials and EEG. Masui 1994; 43: 657-64.
  26. Sebel PS, Flynn PJ, Ingram DA. Effect of nitrous oxide on visual, auditory and somatosensory evoked potentials. Br J Anaesth 1984; 56: 1403-7. https://doi.org/10.1093/bja/56.12.1403
  27. Sebel PS, Ingram DA, Flynn PJ, Rutherfoord CF, Rogers H. Evoked potentials during isoflurane anaesthesia. Br J Anaesth 1986; 58: 580-5. https://doi.org/10.1093/bja/58.6.580
  28. Chi OZ, Ryterband S, Field C. Visual evoked potentials during thiopentone-fentanyl-nitrous oxide anaesthesia in humans. Can J Anaesth 1989; 36: 637-40. https://doi.org/10.1007/BF03005414
  29. Hou WY, Lee WY, Lin SM, Liu CC, Susceto L, Sun WZ, et al. The effects of ketamine, propofol and nitrous oxide on visual evoked potential during fentanyl anesthesia. Ma Zui Xue Za Zhi 1993; 31: 97-102.
  30. Chi OZ, McCoy CL, Field C. Effects of fentanyl anesthesia on visual evoked potentials in humans. Anesthesiology 1987; 67: 827-30. https://doi.org/10.1097/00000542-198711000-00040

Cited by

  1. Comparative analysis of pattern visual evoked potentials according to the type of diabetes mellitus in patients in different diabetic retinopathy stages vol.33, pp.1, 2017, https://doi.org/10.1080/13102818.2019.1620125
  2. 난치성 뇌전증 환자에서 수술 전 유발전위검사 vol.51, pp.2, 2017, https://doi.org/10.15324/kjcls.2019.51.2.198
  3. Extended endoscopic endonasal resection of craniopharyngioma using intraoperative visual evoked potential monitoring: technical note vol.161, pp.11, 2017, https://doi.org/10.1007/s00701-019-04028-7
  4. 수술 중 신경계감시검사에서 검사에 따른 전극의 삽입 및 제거방법 vol.51, pp.4, 2017, https://doi.org/10.15324/kjcls.2019.51.4.453
  5. Occipital gliomas. Case report and literature review vol.84, pp.6, 2017, https://doi.org/10.17116/neiro20208406193
  6. Prediction of Post-operative Visual Deterioration Using Visual-Evoked Potential Latency in Extended Endoscopic Endonasal Resection of Craniopharyngiomas vol.12, pp.None, 2017, https://doi.org/10.3389/fneur.2021.753902
  7. Intraoperative Direct Stimulation Identification and Preservation of Critical White Matter Tracts During Brain Surgery vol.146, pp.None, 2017, https://doi.org/10.1016/j.wneu.2020.10.100
  8. Non-invasive visual evoked potentials under sevoflurane versus ketamine-xylazine in rats vol.7, pp.11, 2017, https://doi.org/10.1016/j.heliyon.2021.e08360
  9. Machine Learning Based Color Classification by Means of Visually Evoked Potentials vol.11, pp.24, 2017, https://doi.org/10.3390/app112411882