DOI QR코드

DOI QR Code

Heme Oxygenase-1 Induction and Anti-inflammatory Actions of Atractylodes macrocephala and Taraxacum herba Extracts Prevented Colitis and Was More Effective than Sulfasalazine in Preventing Relapse

  • Han, Kyu-Hyun (Digestive Disease Center, CHA University Bundang Medical Center) ;
  • Park, Jong-Min (CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University) ;
  • Jeong, Migyeong (CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University) ;
  • Han, Young-Min (CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University) ;
  • Go, Eun-Jin (CHA Cancer Prevention Research Center, CHA Cancer Institute, CHA University) ;
  • Park, Juyeon (Korea Institute of Science and Technology for Eastern Medicine (KISTEM), NeuMed Inc.) ;
  • Kim, Hocheol (Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University) ;
  • Han, Jae Gab (Department of Health Food Research & Development, Daesang Corp.) ;
  • Kwon, Oran (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Hahm, Ki Baik (Digestive Disease Center, CHA University Bundang Medical Center)
  • Received : 2016.09.27
  • Accepted : 2017.01.09
  • Published : 2017.09.15

Abstract

Background/Aims: In inflammatory bowel disease (IBD), repeated bouts of remission and relapse occur in patients and can impose a risk of colitis-associated cancer. We hypothesized that plant extracts of Atractylodes macrocephala (AM) or Taraxacum herba (TH) may be better than sulfasalazine for treating this disease because these extracts can promote additional regeneration. Methods: Murine intestinal epithelial IEC-6 cells were pretreated with AM or TH before a lipopolysaccharide (LPS)-induced challenge. Acute colitis was induced with 7 days of dextran sulfate sodium (DSS) in male C57BL/6 mice, and extracts of AM and TH were administered for 2 weeks before DSS administration. Results: In vitro studies demonstrated that AM or TH treatment reduced LPS-induced COX-2 and tumor necrosis $factor-{\alpha}$ mRNA levels but increased heme oxygenase-1 (HO-1). Oral preadministration of AM and TH rescued mice from DSS-induced colitis by inhibiting inflammatory mediators via inactivated extracellular signal regulated kinase and repressed nuclear factor ${\kappa}B$ and signal transducer and activator of transcription 3, but the effect was weaker for sulfasalazine than that for the extracts. Anti-inflammatory activities occurred via the inhibition of macrophage and T lymphocyte infiltrations. Unlike sulfasalazine, which did not induce HO-1, TH extracts afforded significant HO-1 induction. Conclusions: Because the AM or TH extracts were far superior in preventing DSS-induced colitis than sulfasalazine, AM or TH extracts can be considered natural agents that can prevent IBD relapse.

Keywords

Acknowledgement

Supported by : National Center of Efficacy Evaluation for the Development of Health Products Targeting Digestive Disorders (NCEED)

References

  1. Liu Y, Jia Z, Dong L, Wang R, Qiu G. A randomized pilot study of atractylenolide I on gastric cancer cachexia patients. Evid Based Complement Alternat Med 2008;5:337-344. https://doi.org/10.1093/ecam/nem031
  2. Dong H, He L, Huang M, Dong Y. Anti-inflammatory components isolated from Atractylodes macrocephala Koidz. Nat Prod Res 2008;22:1418-1427. https://doi.org/10.1080/14786410801931629
  3. Li X, Lin J, Han W, et al. Antioxidant ability and mechanism of rhizoma Atractylodes macrocephala. Molecules 2012;17:13457-13472. https://doi.org/10.3390/molecules171113457
  4. Li CQ, He LC, Dong HY, Jin JQ. Screening for the anti-inflammatory activity of fractions and compounds from Atractylodes macrocephala Koidz. J Ethnopharmacol 2007;114:212-217. https://doi.org/10.1016/j.jep.2007.08.002
  5. Li X, Liu F, Li Z, Ye N, Huang C, Yuan X. Atractylodes macrocephala polysaccharides induces mitochondrial-mediated apoptosis in glioma C6 cells. Int J Biol Macromol 2014;66:108-212. https://doi.org/10.1016/j.ijbiomac.2014.02.019
  6. Liu H, Zhu Y, Zhang T, et al. Anti-tumor effects of atractylenolide I isolated from Atractylodes macrocephala in human lung carcinoma cell lines. Molecules 2013;18:13357-13368. https://doi.org/10.3390/molecules181113357
  7. Kang TH, Bang JY, Kim MH, Kang IC, Kim HM, Jeong HJ. Atractylenolide III, a sesquiterpenoid, induces apoptosis in human lung carcinoma A549 cells via mitochondria-mediated death pathway. Food Chem Toxicol 2011;49:514-519. https://doi.org/10.1016/j.fct.2010.11.038
  8. Song HP, Li RL, Chen X, et al. Atractylodes macrocephala Koidz promotes intestinal epithelial restitution via the polyamine: voltage-gated K+ channel pathway. J Ethnopharmacol 2014;152:163-172. https://doi.org/10.1016/j.jep.2013.12.049
  9. Ahmad VU, Yasmeen S, Ali Z, et al. Taraxacin, a new guaianolide from Taraxacum wallichii. J Nat Prod 2000;63:1010-1011. https://doi.org/10.1021/np990495+
  10. Sigstedt SC, Hooten CJ, Callewaert MC, et al. Evaluation of aqueous extracts of Taraxacum officinale on growth and invasion of breast and prostate cancer cells. Int J Oncol 2008;32:1085-1090.
  11. Gonzalez-Castejon M, Visioli F, Rodriguez-Casado A. Diverse biological activities of dandelion. Nutr Rev 2012;70:534-547. https://doi.org/10.1111/j.1753-4887.2012.00509.x
  12. Schutz K, Carle R, Schieber A. Taraxacum: a review on its phytochemical and pharmacological profile. J Ethnopharmacol 2006;107:313-323. https://doi.org/10.1016/j.jep.2006.07.021
  13. Qian L, Zhou Y, Teng Z, Du CL, Tian C. Preparation and antibacterial activity of oligosaccharides derived from dandelion. Int J Biol Macromol 2014;64:392-394. https://doi.org/10.1016/j.ijbiomac.2013.12.031
  14. Hu C, Kitts DD. Luteolin and luteolin-7-O-glucoside from dandelion flower suppress iNOS and COX-2 in RAW264.7 cells. Mol Cell Biochem 2004;265:107-113. https://doi.org/10.1023/B:MCBI.0000044364.73144.fe
  15. Kim YH, Choo SJ, Ryoo IJ, Ahn JS, Yoo ID. Eudesmanolides from Taraxacum mongolicum and their inhibitory effects on the production of nitric oxide. Arch Pharm Res 2011;34:37-41. https://doi.org/10.1007/s12272-011-0104-5
  16. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994;107:1183-1188. https://doi.org/10.1016/0016-5085(94)90246-1
  17. Fujita T, Matsui M, Takaku K, et al. Size- and invasion-dependent increase in cyclooxygenase 2 levels in human colorectal carcinomas. Cancer Res 1998;58:4823-4826.
  18. Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 1993;69:238-249.
  19. Cheon JH, Kim JS, Kim JM, Kim N, Jung HC, Song IS. Plant sterol guggulsterone inhibits nuclear factor-kappaB signaling in intestinal epithelial cells by blocking IkappaB kinase and ameliorates acute murine colitis. Inflamm Bowel Dis 2006;12:1152-1161. https://doi.org/10.1097/01.mib.0000235830.94057.c6
  20. Singer II, Kawka DW, Schloemann S, Tessner T, Riehl T, Stenson WF. Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology 1998;115:297-306. https://doi.org/10.1016/S0016-5085(98)70196-9
  21. Cross RK, Wilson KT. Nitric oxide in inflammatory bowel disease. Inflamm Bowel Dis 2003;9:179-189. https://doi.org/10.1097/00054725-200305000-00006
  22. Kankuri E, Asmawi MZ, Korpela R, Vapaatalo H, Moilanen E. Induction of iNOS in a rat model of acute colitis. Inflammation 1999;23:141-152. https://doi.org/10.1023/A:1020241028723
  23. Nemetz A, Nosti-Escanilla MP, Molnar T, et al. IL1B gene polymorphisms influence the course and severity of inflammatory bowel disease. Immunogenetics 1999;49:527-531. https://doi.org/10.1007/s002510050530
  24. Mudter J, Neurath MF. Il-6 signaling in inflammatory bowel disease: pathophysiological role and clinical relevance. Inflamm Bowel Dis 2007;13:1016-1023. https://doi.org/10.1002/ibd.20148
  25. Yu Z, Kone BC. The STAT3 DNA-binding domain mediates interaction with NF-kappaB p65 and inducible nitric oxide synthase transrepression in mesangial cells. J Am Soc Nephrol 2004;15:585-591. https://doi.org/10.1097/01.ASN.0000114556.19556.F9
  26. Frank DA. STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett 2007;251:199-210. https://doi.org/10.1016/j.canlet.2006.10.017
  27. Aggarwal BB, Kunnumakkara AB, Harikumar KB, et al. Signal transducer and activator of transcription-3, inflammation, and cancer: how intimate is the relationship? Ann N Y Acad Sci 2009; 1171:59-76. https://doi.org/10.1111/j.1749-6632.2009.04911.x
  28. Kundu JK, Surh YJ. Inflammation: gearing the journey to cancer. Mutat Res 2008;659:15-30. https://doi.org/10.1016/j.mrrev.2008.03.002
  29. Janssen-Heininger YM, Poynter ME, Baeuerle PA. Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med 2000;28:1317-1327. https://doi.org/10.1016/S0891-5849(00)00218-5
  30. Schulze-Osthoff K, Ferrari D, Riehemann K, Wesselborg S. Regulation of NF-kappa B activation by MAP kinase cascades. Immunobiology 1997;198:35-49. https://doi.org/10.1016/S0171-2985(97)80025-3
  31. Chen M, May BH, Zhou IW, Xue CC, Zhang AL. FOLFOX 4 combined with herbal medicine for advanced colorectal cancer: a systematic review. Phytother Res 2014;28:976-991. https://doi.org/10.1002/ptr.5092
  32. Park CM, Cho CW, Song YS. TOP 1 and 2, polysaccharides from Taraxacum officinale, inhibit NFkappaB-mediated inflammation and accelerate Nrf2-induced antioxidative potential through the modulation of PI3K-Akt signaling pathway in RAW 264.7 cells. Food Chem Toxicol 2014;66:56-64. https://doi.org/10.1016/j.fct.2014.01.019
  33. Kashiwada Y, Takanaka K, Tsukada H, et al. Sesquiterpene glucosides from anti-leukotriene B4 release fraction of Taraxacum officinale. J Asian Nat Prod Res 2001;3:191-197. https://doi.org/10.1080/10286020108041390
  34. Kim HM, Shin HY, Lim KH, et al. Taraxacum officinale inhibits tumor necrosis factor-alpha production from rat astrocytes. Immunopharmacol Immunotoxicol 2000;22:519-530. https://doi.org/10.3109/08923970009026009
  35. Seo SW, Koo HN, An HJ, et al. Taraxacum officinale protects against cholecystokinin-induced acute pancreatitis in rats. World J Gastroenterol 2005;11:597-599. https://doi.org/10.3748/wjg.v11.i4.597
  36. Hagymasi K, Blazovics A, Feher J, Lugasi A, Kristo ST, Kery A. The in vitro effect of dandelions antioxidants on microsomal lipid peroxidation. Phytother Res 2000;14:43-44. https://doi.org/10.1002/(SICI)1099-1573(200002)14:1<43::AID-PTR522>3.0.CO;2-Q
  37. Hu C, Kitts DD. Antioxidant, prooxidant, and cytotoxic activities of solvent-fractionated dandelion (Taraxacum officinale) flower extracts in vitro. J Agric Food Chem 2003;51:301-310. https://doi.org/10.1021/jf0258858
  38. Hu C, Kitts DD. Dandelion (Taraxacum officinale) flower extract suppresses both reactive oxygen species and nitric oxide and prevents lipid oxidation in vitro. Phytomedicine 2005;12:588-597. https://doi.org/10.1016/j.phymed.2003.12.012
  39. Darley-Usmar V, Wiseman H, Halliwell B. Nitric oxide and oxygen radicals: a question of balance. FEBS Lett 1995;369:131-135. https://doi.org/10.1016/0014-5793(95)00764-Z
  40. Jeong SJ, Kim OS, Yoo SR, Seo CS, Kim Y, Shin HK. Anti-inflammatory and antioxidant activity of the traditional herbal formula Gwakhyangjeonggi-san via enhancement of heme oxygenase-1 expression in RAW264.7 macrophages. Mol Med Rep 2016;13:4365-4371. https://doi.org/10.3892/mmr.2016.5084
  41. Zhang JL, Huang WM, Zeng QY. Atractylenolide I protects mice from lipopolysaccharide-induced acute lung injury. Eur J Pharmacol 2015;765:94-99. https://doi.org/10.1016/j.ejphar.2015.08.022
  42. Zhang X, Xiong H, Liu L. Effects of taraxasterol on inflammatory responses in lipopolysaccharide-induced RAW 264.7 macrophages. J Ethnopharmacol 2012;141:206-211. https://doi.org/10.1016/j.jep.2012.02.020
  43. Yum HW, Zhong X, Park J, et al. Oligonol inhibits dextran sulfate sodium-induced colitis and colonic adenoma formation in mice. Antioxid Redox Signal 2013;19:102-114. https://doi.org/10.1089/ars.2012.4626
  44. Saxena A, Kaur K, Hegde S, Kalekhan FM, Baliga MS, Fayad R. Dietary agents and phytochemicals in the prevention and treatment of experimental ulcerative colitis. J Tradit Complement Med 2014;4:203-217. https://doi.org/10.4103/2225-4110.139111
  45. Somani SJ, Modi KP, Majumdar AS, Sadarani BN. Phytochemicals and their potential usefulness in inflammatory bowel disease. Phytother Res 2015;29:339-350. https://doi.org/10.1002/ptr.5271
  46. Hur SJ, Kang SH, Jung HS, et al. Review of natural products actions on cytokines in inflammatory bowel disease. Nutr Res 2012;32:801-816. https://doi.org/10.1016/j.nutres.2012.09.013

Cited by

  1. Heme Oxygenase-1 as a Modulator of Intestinal Inflammation Development and Progression vol.9, pp.None, 2017, https://doi.org/10.3389/fimmu.2018.01956
  2. Systems pharmacology reveals the unique mechanism features of Shenzhu Capsule for treatment of ulcerative colitis in comparison with synthetic drugs vol.8, pp.None, 2017, https://doi.org/10.1038/s41598-018-34509-1
  3. Polysaccharide of Atractylodes macrocephala Koidz Enhances Cytokine Secretion by Stimulating the TLR4-MyD88-NF-κB Signaling Pathway in the Mouse Spleen vol.22, pp.9, 2019, https://doi.org/10.1089/jmf.2018.4393
  4. Plumericin prevents intestinal inflammation and oxidative stress in vitro and in vivo vol.34, pp.1, 2017, https://doi.org/10.1096/fj.201902040r
  5. Polysaccharides from Atractylodes macrocephala Koidz. Ameliorate ulcerative colitis via extensive modification of gut microbiota and host metabolism vol.138, pp.2, 2020, https://doi.org/10.1016/j.foodres.2020.109777
  6. Heme Oxygenase-1 in Gastrointestinal Tract Health and Disease vol.9, pp.12, 2017, https://doi.org/10.3390/antiox9121214
  7. Effects of Jian Pi Qing Chang Hua Shi decoction on mucosal injuries in a 2,4,6-trinitrobenzene sulphonic acid-induced inflammatory bowel disease rat model vol.59, pp.1, 2021, https://doi.org/10.1080/13880209.2021.1928240
  8. Exploration of the Potential Mechanisms of Wumei Pill for the Treatment of Ulcerative Colitis by Network Pharmacology vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/4227668
  9. Pro-Inflammatory Effects of Indoxyl Sulfate in Mice: Impairment of Intestinal Homeostasis and Immune Response vol.22, pp.3, 2017, https://doi.org/10.3390/ijms22031135
  10. A comprehensive review of the benefits of Taraxacum officinale on human health vol.45, pp.1, 2017, https://doi.org/10.1186/s42269-021-00567-1
  11. Quality Evaluation of Atractylodis Macrocephalae Rhizoma Based on Combinative Method of HPLC Fingerprint, Quantitative Analysis of Multi-Components and Chemical Pattern Recognition Analysis vol.26, pp.23, 2017, https://doi.org/10.3390/molecules26237124
  12. Attenuation of in vitro and in vivo melanin synthesis using a Chinese herbal medicine through the inhibition of tyrosinase activity vol.95, pp.None, 2017, https://doi.org/10.1016/j.phymed.2021.153876
  13. Bone marrow mesenchymal stem cells combined with Atractylodes macrocephala polysaccharide attenuate ulcerative colitis vol.13, pp.1, 2017, https://doi.org/10.1080/21655979.2021.2012954