DOI QR코드

DOI QR Code

Direct Laser Deposition of 14Cr Oxide Dispersion Strengthened Steel Powders Using Y2O3 and HfO2 Dispersoids

  • Arkhurst, Barton Mensah (Department of Advanced Materials Engineering, Hanbat National University) ;
  • Park, Jin-Ju (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Lee, Chang-Hoon (Ferrous Alloy Department, Advanced Metallic Materials Division, Korea Institute of Materials Science) ;
  • Kim, Jeoung Han (Department of Advanced Materials Engineering, Hanbat National University)
  • Received : 2017.02.08
  • Accepted : 2017.03.27
  • Published : 2017.08.05

Abstract

This study investigated the feasibility of using $HfO_2$ as a dispersoid in the additive manufacturing process, compared to $Y_2O_3$. The effect of pre-annealing treatment was investigated too. Scanning electron microscopy (SEM) analyses revealed unusually coarse deposition layers for both the $HfO_2$ and $Y_2O_3$ dispersed oxide dispersion strengthed (ODS) steels, in both the as-milled and the pre-annealed conditions. The deposited layer of the $HfO_2$ dispersed ODS steel had relatively coarser grains than the deposited layer of the $Y_2O_3$ dispersed ODS steel in both the as-milled and the pre-annealed conditions. Moreover, the SEM results also revealed the presence of nanometer sized particles in all the deposition layers of both $Y_2O_3$ and $HfO_2$ dispersed ODS steels, and their number densities were far lower than those in conventional bulk ODS steels. However, transmission electron microscopy analyses revealed that the dispersion and retention of nanoparticles within the melt were not achieved, even with $HfO_2$ as a dispersoid, in contrast to the results from the SEM analyses. Furthermore, the deposition layers of both the as-milled $Y_2O_3$ and $HfO_2$ ODS steels also exhibited an unusual nano-grained structure. The microhardnesses of the $HfO_2$ and the $Y_2O_3$ dispersed ODS steels in both the as-milled and the pre-annealed conditions were higher than the substrate. Furthermore, the $Y_2O_3$ dispersed ODS steel had a higher microhardness than the $HfO_2$ dispersed ODS steel in both the as-milled and the pre-annealed conditions.

Keywords

Acknowledgement

Supported by : Hanbat National University

References

  1. X. Boulnat, M. Perez, D. Fabregue, S. Cazottes, and Y. De Carlan, Acta Mater. 107, 390 (2016). https://doi.org/10.1016/j.actamat.2016.01.034
  2. S.-J. Han, J. Seo, K.-H. Choe, and M.-H. Kim, Met. Mater. Int. 21, 270 (2015). https://doi.org/10.1007/s12540-015-3469-z
  3. M. Ohnuma, J. Suzuki, S. Ohtsuka, S. W. Kim, T. Kaito, M. Inoue, and H. Kitazawa, Acta Mater. 57, 5571 (2009). https://doi.org/10.1016/j.actamat.2009.07.054
  4. T. S. Byun, J. H. Yoon, D. T. Hoelzer, Y. B. Lee, S. H. Kang, and S. A. Maloy, J. Nucl. Mater. 449, 290 (2014). https://doi.org/10.1016/j.jnucmat.2013.10.007
  5. J. H. Kim, J.-B. Seol, and K. M. Kim, Korean J. Met. Mater. 54, 171 (2016). https://doi.org/10.3365/KJMM.2016.54.3.171
  6. J. H. Kim, T. S. Byun, E. Shin, J. B. Seol, S. Young, and N. S. Reddy, J. Alloy. Compd. 651, 363 (2015). https://doi.org/10.1016/j.jallcom.2015.08.100
  7. I. Hilger, F. Bergner, A. Ulbricht, A. Wagner, T. Wei$\ss$garber, B. Kieback, C. Heintze, and C. D. Dewhurst, J. Alloy.Compd. 685, 927 (2016). https://doi.org/10.1016/j.jallcom.2016.06.238
  8. L. Barnard, N. Cunningham, G. R. Odette, I. Szlufarska, and D. Morgan, Acta Mater. 91, 340 (2015). https://doi.org/10.1016/j.actamat.2015.03.014
  9. R. M. Hunt, K. J. Kramer, and B. El-Dasher, J. Nucl. Mater. 464, 80 (2015). https://doi.org/10.1016/j.jnucmat.2015.04.011
  10. S. Khademzadeh, N. Parvin, P. F. Bariani, and F. Mazzucato, Met. Mater. Int. 21, 1081 (2015). https://doi.org/10.1007/s12540-015-5304-y
  11. J. S. Park, M.-G. Lee, Y.-J. Cho, J. H. Sung, M.-S. Jeong, S.-K. Lee, Y.-J. Choi, and D. H. Kim, Met. Mater. Int. 22, 143 (2016). https://doi.org/10.1007/s12540-016-5372-7
  12. K. Euh, B. Arkhurst, I. H. Kim, H. Kim, and J. H. Kim, Met. Mater. Int. 23, (2017) (in press, DOI:10.1007/s12540-017-6832-4).
  13. J. C. Walker, K. M. Berggreen, A. R. Jones, and C. J. Sutcliffe, Adv. Eng. Mater. 11, 541 (2009). https://doi.org/10.1002/adem.200800407
  14. T. Boegelein, E. Louvis, K. Dawson, G. J. Tatlock, and A. R. Jones, Mater. Charact. 112, 30 (2016). https://doi.org/10.1016/j.matchar.2015.11.021
  15. T. Boegelein, S. N. Dryepondt, A. Pandey, K. Dawson, and G. J. Tatlock, Acta Mater. 87, 201 (2015). https://doi.org/10.1016/j.actamat.2014.12.047
  16. F. Bergner, I. Hilger, J. Virta, J. Lagerbom, G. Gerbeth, S. Connolly, Z. Hong, P. S. Grant, and T. Weissgarber, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 1 (2016).
  17. K. Verhiest, S. Mullens, I. De Graeve, N. De Wispelaere, S. Claessens, A. De Bremaecker, and K. Verbeken, Ceram. Int. 40, 14319 (2014). https://doi.org/10.1016/j.ceramint.2014.06.023
  18. H. Kim, I. Kim, Y. Jung, D. Park, J. Park, and Y. Koo, Nucl. Eng. Technol. 46, 521 (2014). https://doi.org/10.5516/NET.07.2014.027
  19. G. R. Odette, JOM 6, 2427 (2014).
  20. H. J. Chang, H. Y. Cho, and J. H. Kim, J. Alloy. Compd. 653, 528 (2015). https://doi.org/10.1016/j.jallcom.2015.08.273
  21. W. L. Xiao, D. H. Ping, H. Murakami, and Y. Yamabe-Mitarai, Mater. Sci. Eng. A 580, 266 (2013). https://doi.org/10.1016/j.msea.2013.05.019
  22. G. E. Kim, Y. D. Kim, S. Noh, and T. K. Kim, Korean J. Met. Mater. 54, 533 (2016). https://doi.org/10.3365/KJMM.2016.54.7.533