DOI QR코드

DOI QR Code

Effect of Current Densities on the Electromigration Failure Mechanisms of Flip-Chip Sn-Ag Solder Bump

전류밀도에 따른 플립칩 Sn-Ag 솔더 범프의 Electromigration 손상기구 분석

  • Kim, Gahui (School of Materials Science and Engineering, Andong National University) ;
  • Son, Kirak (School of Materials Science and Engineering, Andong National University) ;
  • Park, Gyu-Tae (Amkor Technology Korea Inc) ;
  • Park, Young-Bae (School of Materials Science and Engineering, Andong National University)
  • 김가희 (안동대학교 신소재공학부, 청정에너지소재기술연구센터) ;
  • 손기락 (안동대학교 신소재공학부, 청정에너지소재기술연구센터) ;
  • 박규태 (앰코테크놀로지 코리아) ;
  • 박영배 (안동대학교 신소재공학부, 청정에너지소재기술연구센터)
  • Received : 2017.05.11
  • Accepted : 2017.08.16
  • Published : 2017.11.05

Abstract

The effect of current densities on the electromigration (EM) failure mechanism of flip chip Cu/Ni/Sn-Ag/Cu solder bumps was investigated under stressing conditions at current densities ranging from $5.0{\sim}6.9{\times}10^3A/cm^2$ at $150^{\circ}C$. The EM failure times at $5.0{\times}10^3A/cm^2$ were around 11 times longer than at $6.9{\times}10^3A/cm^2$. A systematic failure analysis considering stressing time showed that a current density of $5.0{\times}10^3A/cm^2$ induced pancake void propagation near the $Cu_6Sn_5$ intermetallic compound/solder interface at the cathode, while a current density of $6.9{\times}10^3A/cm^2$ produced severe Joule heating due to high current crowding near the solder/$Cu_6Sn_5$ interface. This was due to electrons entering the location at the cathode, which led to local melting of the solder and fast Cu consumption. It was determined that the EM failure mechanisms of flip chip Sn-Ag solder strongly depend not only on the Ni barrier effect but also on current density, which drives the dominant failure mechanisms of pancake voiding and local Joule-heating melting.

Keywords

Acknowledgement

Supported by : 한국연구재단, KSRC

References

  1. J. W. Yoon, J. W. Kim, J. M. Koo, S. S. Ha, B. I. Noh, W. C. Moon, J. H. Moon, and S. B. Jung, J. of KWJS 25, 108 (2007).
  2. K. N. Tu and K. Zeng, Master. Sci. Eng. 34, 1 (2001). https://doi.org/10.1016/S0927-796X(01)00029-8
  3. T. S. Oh, K. Y. Lee, Y. H. Lee, and B. Y. Jung, Met. Master. Int. 15, 479 (2009). https://doi.org/10.1007/s12540-009-0479-8
  4. R. R. Tummala, Fundamentals of Microsystems packaging, McGraw-Hill Education, New York (2001).
  5. Y. Liu, Microelectron. Reliab. 50, 514 (2010). https://doi.org/10.1016/j.microrel.2009.09.002
  6. H. Shimaamoto, Proc. 56th Elec. Comp. C., USA (2007).
  7. M. Y. Kim, T. S. Oh, and T. S. Oh, Korean. J. Met. Mater. 48, 557 (2010).
  8. J. H. Lau, Low Cost Flip Chip Technologies for DCA, WLCSP, and PBGA Assemblies, pp.1-90, McGraw-Hill Professional, (2000).
  9. J. Y. Choi, and T. S. Oh, J. Microelectron. Packag. Soc. 16, 9-15 (2009).
  10. S. H. Kim, B. R. Lee, G. T. Park, J. M. Kim, S. H. Yoo, and Y. B. Park, Korean J. Met. Mater. 53, 735 (2015). https://doi.org/10.3365/KJMM.2015.53.10.735
  11. J. H. Ahn, K. S. Kim, Y. C. Lee, Y. I. Lim, and S. B. Jung, J. Microelectron. Packag. Soc. 17, 1 (2010).
  12. Directive 2002/95/EC of the European Parliament and of the Council, Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS), EU (2003).
  13. B. J. Lee, N. M. Hwang and H. M. Lee, Acta Mater. 45, 1867 (1997). https://doi.org/10.1016/S1359-6454(96)00325-4
  14. J. M. Kim, H. B. Lee, Y. S. Chang, and J. B. Choi, Met. Mater. Int. 19, 231 (2013). https://doi.org/10.1007/s12540-013-2016-z
  15. V. Denis and C. Gilles, Proc. 18th Ieee/cpmt Int. El. Mfg., p. 101 (1995).
  16. D. Chang, F. Bai, Y. P. Wang and C.S. Hsiao, Proc. 6th El. Packag. Tech. Conf., p. 149 (2004).
  17. H. K. Lee, S. H. Son, H. Y. Lee, and J. M. Jeon, J. Kor. Inst. Surf. Eng. 40, 32 (2007). https://doi.org/10.5695/JKISE.2007.40.1.032
  18. M. H. Jeong, J. M. Kim, S. H. Yoo, C. W. Lee, and Y. B. Park, J. Microelectron. Packag. Soc. 17, 81 (2010).
  19. K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science for Electrical Engineering and Materials Scientists, pp.355-368, Macmillan, New York (1992).
  20. K. N. Tu, J. Appl. Phys. 94, 5451 (2003). https://doi.org/10.1063/1.1611263
  21. T. Y. Lee, K. N. Tu, S. M. Kuo, and D. R. Frear, J. Appl. Phys. 89, 3189 (2001). https://doi.org/10.1063/1.1342023
  22. W. J. Choi, E. C. C. Yeh, and K. N. Tu, J. Appl. Phys. 89, 5665 (2003).
  23. T. Y. Lee, K. N. Tu, and D. R. Frear, J. Appl. Phys. 90, 4502 (2001). https://doi.org/10.1063/1.1400096
  24. C. Chen, H. M. Tong, and K. N. Tu, Annu. Ann. Rev. Mater. Res., 41, 531-555 (2010).
  25. C. E. Ho, C. R. Kao, and K. N. Tu, Advanced Filp Chip Packaging, Springer, New York (2013).
  26. S. H. Chae, J. Im, T. Uehling, and P. S. Ho, 58th Elec. Comp. C., p.354-359, USA (2008).
  27. M. H. R. Jen, L. C. Liu, and Y. S. Lai, Microelectron. Reliab. 49, 734 (2009). https://doi.org/10.1016/j.microrel.2009.04.008
  28. H. Y. Chen, M. F. Ku, and C. Chen, Adv. Mater. Res-ger. 1, 83 (2012). https://doi.org/10.12989/amr.2012.1.1.083
  29. J. M. Kim, M. H. Jeong, S. H. Yoo, and Y. B. Park, J. Electron. Mater. 41, 791 (2012). https://doi.org/10.1007/s11664-011-1888-2
  30. J. H. Lee, G. T. Lim, and Y. B. Park, J. Korean Phys. Soc. 54, 1784 (2009). https://doi.org/10.3938/jkps.54.1784
  31. M. H. Chu, S. W. Liang, C. Chen, and A. T. Huang, J. Electron. Mater. 41, 2502 (2012). https://doi.org/10.1007/s11664-012-2175-6
  32. Joint Electron Device Engineering Council, GUIDELINE FOR CHARACTERIZING SOLDER BUMP ELECTROMIGRATION UNDER CONSTANT CURRENT AND TEMPERATURE STRESS, USA (2008).
  33. B. H. Kwak, M. H. Jeong, and Y. B. Park, Korean J. Met. Mater 50, 775 (2012).
  34. K. N. Tu, Solder Joint Technology, Materials, Properties, and Reliability, pp.59-71, Springer, New York (2007).
  35. D. A. Porter and K. E. Easterling, Phase Transformation in materials, 2nd ed, Chapman & Hall, London (1992).
  36. K. N. Tu, Solder Joint Technology, Materials, Properties, and Reliability. pp.289-303, Springer, New York (2007)
  37. J. H. Lee, G. R. Lim, S. T. Yang, M. S. Suh, Q. H. Chung, K. Y. Byun, and Y. B. Park, Korean. J. Met. Mater. 46, 310 (2008).
  38. M. H. Jeong, J. W. Kim, B. H. Kwak, B. J. Kim, K. W. Lee, J. D. Kim, Y. C. Joo, and Y. B. Park, Korean. J. Met. Mater. 49, 180 (2011).
  39. S. Choi, T. R. Bieler, J. P. Lucas, and K. N. Subramanian, J. Electron. Mater. 28, 1209 (1999). https://doi.org/10.1007/s11664-999-0159-y
  40. J. H. Lee, S. T. Yang, M. S. Suh, Q. H. Chung, K. Y. Byun, and Y. B. Park, Kor. J. Mater. Res. 17, 91 (2007). https://doi.org/10.3740/MRSK.2007.17.2.091
  41. J. Y. Kim, J. Yu, and S. H. Kim, Acta Mater. 57, 5001 (2009). https://doi.org/10.1016/j.actamat.2009.06.060
  42. J. M. Park, S. H. Kim, M. H. Jeong, and Y. B. Park, J. Appl. Phys. 53, 05HA06 (2014). https://doi.org/10.7567/JJAP.53.05HA06
  43. T. Frank, C. Chappaz, P. Leduc, L. Arnaud, F. Lorut, S. Moreau, A. Thuaire, R. E. Farhane, and L. Anghel., Int. Rel. Phy., 3F.4.1-3F.4.6, USA (2011).
  44. R Bauer, A. H. Fischer, C. Birzer, and L. Alexa, 61st Elec. Comp. C., 317-325, USA (2011).
  45. K.Yamanaka, Y. Tsukada, and K.suganuma, Microelectron. Reliab. 47, 1280 (2007). https://doi.org/10.1016/j.microrel.2006.09.028