DOI QR코드

DOI QR Code

Effects of thin-film thickness on device instability of amorphous InGaZnO junctionless transistors

박막의 두께가 비정질 InGaZnO 무접합 트랜지스터의 소자 불안정성에 미치는 영향

  • Jeon, Jong Seok (Department of Electronic Engineering, Incheon National University) ;
  • Jo, Seong Ho (Department of Electronic Engineering, Incheon National University) ;
  • Choi, Hye Ji (Department of Electronic Engineering, Incheon National University) ;
  • Park, Jong Tae (Department of Electronic Engineering, Incheon National University)
  • Received : 2017.05.16
  • Accepted : 2017.06.21
  • Published : 2017.09.30

Abstract

In this work, a junctionless transistor with different film thickness of amorphous InGaZnO has been fabricated and it's instability has been analyzed with different film thickness under positive and negative gate stress as well as light illumination. It was found that the threshold voltage shift and the variation of drain current have been increased with decrease of film thickness under the condition of gate stress and light illumination. The reasons for the observed results have been explained by stretched-exponential model and device simulation. Due to the reduced carrier trapping time with decrease of film thickness, electrons and holes can be activated easily. Due to the increase of vertical channel electric field reaching the back interface with decrease of film thickness, more electrons and holes can be accumulated in back interface. When one decides the film thickness for the fabrication of junctionless transistor, the more significant device instability with decrease of film thickness should be consdered.

비정질 InGaZnO 박막 두께가 다른 무접합 트랜지스터를 제작하고 두께에 따른 양과 음의 게이트 스트레스 전압 및 빛을 비춘 상태에서 소자 불안정성을 분석하였다. 채널 박막 두께가 얇을수록 게이트 스트레스 및 빛이 인가된 상태에서 문턱전압 및 드레인 전류 변화가 큰 것을 알 수 있었다. 그 원인을 stretched-exponential 모델과 소자 시뮬레이션을 수행하여 설명하였다. 박막이 얇을수록 캐리어 트랩핑 시간이 짧기 때문에 전자나 홀이 빨리 활성화되는 것과 채널 박막의 뒷부분에서 채널의 수직 전계가 증가하여 전자나 홀을 많이 축적할 수 있는 것으로 설명하였다. IGZO 무접합 트랜지스터 제작에서 채널 박막의 두께를 결정할 때 채널 박막 두께가 얇을수록 소자 불안정성이 큰 것을 고려해야 됨을 알 수 있다.

Keywords

References

  1. J. Park, C. S. Kim, Y.S. Kim, Y. C. Park, H. J. Park, B. S. Bae, J. S. Park, and H. S. Kim, "The effect of ITO and Mo electrodes on the properties and stablity of In-Ga-Zn-O thin film transistors," Journal of Electronics, vol. 36, no. 1, pp. 129-134, Jun. 2016.
  2. J. R. Yim, S. Y. Jung, H. W. Yeon, J. Y. Kwon, Y. J. Lee, J. H. Lee, and Y. C. Joo, "Effect of Metal Electrode on the Electrical Performance of Amorphous In-Ga-Zn-O Thin Film Transistor," Japanese Journal of Applied Physics, vol.51, pp. 011401-1-5, Dec. 2011.
  3. Y. Ueoka, Y. Ishikawa, J. P. Bermundo, H. Yamazki, S. Urakawa, Y. Osada, M.. Horita, and Y. Uraoka, "Effect of contact material on amorphous InGaZnO thin-film transistor characteristics," Japanese Journal of Applied Physics, vol.53, pp.03CC04-1-5, Feb. 2014. https://doi.org/10.7567/JJAP.53.03CC04
  4. J. Jiang, J. Sun, W. Dou, and Q. Wan, "Junctionless flexible oxide based thin film transistors on paper substrates," IEEE Electron Device Letters, vol.33, no.1, pp.65-67, Jan. 2012. https://doi.org/10.1109/LED.2011.2172973
  5. J. Zhou, G. Wu, L. Guo, L. Zhu, and Q. Wan, "Flexible transparent junctionless TFTs with oxygentuned Indium-Zin-Oxide channels," IEEE Electron Device Letters, vol.34, no.2, pp.888-890, Feb. 2013. https://doi.org/10.1109/LED.2013.2260819
  6. J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. Oneill, A. Blake, M. White, A.M. Kelleher, B. McCarthy, and R. Murphy, "Nanowire transistor without junction," Nature Nanotecnology, vol.5, no.3, pp.225-229, Mar. 2010. https://doi.org/10.1038/nnano.2010.15
  7. C. W. Lee, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J.P. Colinge, "Performance estimation of junctionless multigate transistors," Solid-State Electronics, vol.54, pp.97-103, Feb. 2010. https://doi.org/10.1016/j.sse.2009.12.003
  8. S. M. Lee, J. T. Park, "Device Design Guideline to Reduce the Threshold Voltage Variation with Fin Width in Junctionless MuGFETs," Journal of the Korea Institute of Information and Communication Engineering, vol.18. no.1, pp.135-141, 2014. https://doi.org/10.6109/jkiice.2014.18.1.135
  9. X. Ding, J. Zhang, . Li, H. Zhang, W. Shi, X. Jiang, Z, Zhang, "Influence of the InGaZnO channel layer thickness on the performance of thin film transistors," Superlattice and Microstructures, vol. 63, pp. 70-78, Aug. 2013. https://doi.org/10.1016/j.spmi.2013.08.017
  10. M. Nakata, H. Tsuji, H. sao, Y. Nakajima, Y. Fujisaki, T. Takei, T. Yamamoto, and H. Fujikako, "Influence of oxide semiconductor thickness on thinfilm transistor characteristics," Japanese Journal of Applied Physics, vol.52, pp. 03BB04-1-5, Mar. 2013. https://doi.org/10.7567/JJAP.52.03BB04
  11. S.M. Kim, M.J. Ahan, W.J. Cho, J.T.Park, "Device instability of amorphous InGaZnO thin film transistors with transparent source and drain," Microelectronics Reliability, vol.64, pp. 575-579, Oct. 2016. https://doi.org/10.1016/j.microrel.2016.07.037
  12. K.H. Lee, T.G. Kang, K.Y. Lee, J.T. Park, "Hot carrier induced device degradation in amorphous InGaZnO thin film transistors with source and drain electrode materials," Journal of the Korea Institute of Information and Communication Engineering, vol.21. no.1, pp.82-89, 2017. https://doi.org/10.6109/jkiice.2017.21.1.82
  13. C. H. Jo, S. W. Jun, W. J. Kim, I. S. Hur, H. Y. Bae, S. J. Choi, D. H. Kim, and D. M. Kim, "Characterization of density-of-states and parasitic resistance in a-InGaZnO thin-film transistors after negative bias stress," Applied Physics Letters, vol.102, pp. 143502-1-5, Apr. 2013. https://doi.org/10.1063/1.4800172
  14. T. Y. Hsieh, T. C. Chang, T. C. Chen, and M. Y. Tsai, "Review of Present Reliability Challenges in Amorphous In-Ga-Zn-O Thin Film Transistors," ECS Journal of Solid State Science and Technology, vol. 3, no. 9, pp. Q3058-Q3070, Aug. 2014. https://doi.org/10.1149/2.013409jss
  15. B. K. Ryu, H. K. Noh, E. A. Choi, and K. J. Chang, "O-vacancy as the origin of negative bias illumination stress instability in amorphous In-Ga-Zn-O thin film transistors," Applied Physics Letters, vol. 97, no. 7, pp. 022108-1-3, Jul. 2010. https://doi.org/10.1063/1.3464964
  16. D. S. kong, H. W. jung, Y. S. Kim, M. K. Bae, J. M. Jang, J. H. Kim, W. J. Kim, I. S. Hur, D. M. Kim, and D. H. Kim, "Effects of the active layer thickness on the negative bias illumination stressinduced instability in amorphous InGaZnO thin-film transistors," Journal of the Korean Physical Society, vol.59, no. 2, pp. 505-510, Feb. 2011. https://doi.org/10.3938/jkps.59.505
  17. E.N. Cho, J.H. Kang, and I.G. Yun, "Effects of channel thickness variation on bias stress instability of InGaZnO thin-film transistors," Microelectronics Reliability, vol.51, pp.1792-1795, Oct. 2011. https://doi.org/10.1016/j.microrel.2011.07.018
  18. A. H. Chen, H. T. Cao, H. Z. Zhang, L. Y. Ling, Z. M. Liu, Z. Yu, Q. W, "Influence of the channel layer thickness on electrical properties of indium zinc oxide thin-film transistor," Microelectronic Engineering, vol. 87, pp.2019-2023, Jan. 2010. https://doi.org/10.1016/j.mee.2009.12.081
  19. S. J. Kim, S. Y. Lee, Y. W. Lee, W. G. Lee, K. S. Yoon, J. Y. Kwon, and M. K. Han, "Effect of channel layer thickness on characteristics and stability of amorphous hafnium-Indium-Zinc oxide thin film transistors," Japanese Journal of Applied Physics, vol.50, pp. 024104-1-3, Feb. 2011. https://doi.org/10.7567/JJAP.50.024104