DOI QR코드

DOI QR Code

Oxidation-reduction potential as a new marker for oxidative stress: Correlation to male infertility

  • Agarwal, Ashok (American Center for Reproductive Medicine, Department of Urology, Cleveland Clinic) ;
  • Bui, Albert Danh (American Center for Reproductive Medicine, Department of Urology, Cleveland Clinic)
  • Received : 2017.09.04
  • Accepted : 2017.10.15
  • Published : 2017.11.22

Abstract

Male infertility affects men worldwide. Oxidative stress (OS), characterized by an overabundance of reactive oxygen species (ROS) or a deficiency of antioxidants, is one of the major causes of male infertility. OS causes damage at the molecular level, which impairs lipids, proteins, and DNA. The cyclic cascade of redox reactions weakens sperm function which leads to poor semen parameters and eventual sterility. There is a need for advanced diagnostic tests that can quickly and accurately detect OS. Most commonly used assays can only measure single constituents of OS. However, the MiOXSYS System introduces a new strategy to detect OS by measuring the oxidation-reduction potential (ORP)--a direct evaluation of the redox balance between ROS and antioxidants. The MiOXSYS System has shown promise as a diagnostic tool in the evaluation of male infertility. This review explores the concept of ORP, details the principle of the MiOXSYS System, and summarizes the findings in clinical studies that support ORP measurement in semen.

Keywords

References

  1. Kumar N, Singh AK. Trends of male factor infertility, an important cause of infertility: a review of literature. J Hum Reprod Sci 2015;8:191-196. https://doi.org/10.4103/0974-1208.170370
  2. Esteves SC. Clinical relevance of routine semen analysis and controversies surrounding the 2010 World Health Organization criteria for semen examination. Int Braz J Urol 2014;40:443-53.
  3. Esteves SC, Hamada A, Kondray V, Pitchika A, Agarwal A. What every gynecologist should know about male infertility: an update. Arch Gynecol Obstet 2012;286:217-29. https://doi.org/10.1007/s00404-012-2274-x
  4. Esteves SC, Zini A, Aziz N, Alvarez JG, Sabanegh ES Jr, Agarwal A. Critical appraisal of World Health Organization's new reference values for human semen characteristics and effect on diagnosis and treatment of subfertile men. Urology 2012;79:16-22. https://doi.org/10.1016/j.urology.2011.08.003
  5. Aitken RJ, Clarkson JS. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. J Reprod Fertil 1987;81:459-69. https://doi.org/10.1530/jrf.0.0810459
  6. Alvarez JG, Touchstone JC, Blasco L, Storey BT. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J Androl 1987;8:338-48. https://doi.org/10.1002/j.1939-4640.1987.tb00973.x
  7. Aitken RJ, Clarkson JS, Hargreave TB, Irvine DS, Wu FC. Analysis of the relationship between defective sperm function and the generation of reactive oxygen species in cases of oligozoospermia. J Androl 1989;10:214-20. https://doi.org/10.1002/j.1939-4640.1989.tb00091.x
  8. Bisht S, Dada R. Oxidative stress: major executioner in disease pathology, role in sperm DNA damage and preventive strategies. Front Biosci (Schol Ed) 2017;9:420-47. https://doi.org/10.2741/s495
  9. de Lamirande E, Jiang H, Zini A, Kodama H, Gagnon C. Reactive oxygen species and sperm physiology. Rev Reprod 1997;2:48-54. https://doi.org/10.1530/ror.0.0020048
  10. Du Plessis SS, Agarwal A, Halabi J, Tvrda E. Contemporary evidence on the physiological role of reactive oxygen species in human sperm function. J Assist Reprod Genet 2015;32:509-20. https://doi.org/10.1007/s10815-014-0425-7
  11. Aitken RJ. Reactive oxygen species as mediators of sperm capacitation and pathological damage. Mol Reprod Dev 2017;84:1039-52. https://doi.org/10.1002/mrd.22871
  12. Imam SN, Shamsi MB, Kumar K, Deka D, Dada R. Idiopathic recurrent pregnancy loss: role of paternal factors; a pilot study. J Reprod Infertil 2011;12:267-76.
  13. Zidi-Jrah I, Hajlaoui A, Mougou-Zerelli S, Kammoun M, Meniaoui I, Sallem A, et al. Relationship between sperm aneuploidy, sperm DNA integrity, chromatin packaging, traditional semen parameters, and recurrent pregnancy loss. Fertil Steril 2016;105:58-64. https://doi.org/10.1016/j.fertnstert.2015.09.041
  14. Henkel R, Kierspel E, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, et al. DNA fragmentation of spermatozoa and assisted reproduction technology. Reprod Biomed Online 2003;7:477-84. https://doi.org/10.1016/S1472-6483(10)61893-7
  15. Du Plessis SS, Makker K, Desai NR, Agarwal A. Impact of oxidative stress on IVF. Expert Rev Obstet Gynecol 2008;3:539-54. https://doi.org/10.1586/17474108.3.4.539
  16. Yang Q, Zhao F, Hu L, Bai R, Zhang N, Yao G, et al. Effect of paternal overweight or obesity on IVF treatment outcomes and the possible mechanisms involved. Sci Rep 2016;6:29787. https://doi.org/10.1038/srep29787
  17. Opuwari CS, Henkel RR. An update on oxidative damage to spermatozoa and oocytes. Biomed Res Int 2016;2016:9540142.
  18. Agarwal A, Allamaneni SS, Said TM. Chemiluminescence technique for measuring reactive oxygen species. Reprod Biomed Online 2004;9:466-8. https://doi.org/10.1016/S1472-6483(10)61284-9
  19. Said TM, Kattal N, Sharma RK, Sikka SC, Thomas AJ Jr, Mascha E, et al. Enhanced chemiluminescence assay vs colorimetric assay for measurement of the total antioxidant capacity of human seminal plasma. J Androl 2003;24:676-80. https://doi.org/10.1002/j.1939-4640.2003.tb02726.x
  20. Sharma RK, Pasqualotto FF, Nelson DR, Thomas AJ Jr, Agarwal A. The reactive oxygen species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod 1999;14:2801-7. https://doi.org/10.1093/humrep/14.11.2801
  21. Grotto D, Santa Maria LD, Boeira S, Valentini J, Charao MF, Moro AM, et al. Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography-visible detection. J Pharm Biomed Anal 2007;43:619-24. https://doi.org/10.1016/j.jpba.2006.07.030
  22. Agarwal A, Roychoudhury S, Bjugstad KB, Cho CL. Oxidation-reduction potential of semen: what is its role in the treatment of male infertility? Ther Adv Urol 2016;8:302-18. https://doi.org/10.1177/1756287216652779
  23. Shapiro HM. Redox balance in the body: an approach to quantitation. J Surg Res 1972;13:138-52. https://doi.org/10.1016/0022-4804(72)90057-1
  24. Bjugstad KB, Rael LT, Levy S, Carrick M, Mains CW, Slone DS, et al. Oxidation-reduction potential as a biomarker for severity and acute outcome in traumatic brain injury. Oxid Med Cell Longev 2016;2016:6974257.
  25. Bjugstad KB, Fanale C, Wagner J, Jensen J, Salottolo K, Rael LT, Bar-Or D. A 24 h delay in the redox response distinguishes the most severe stroke patients from less severe stroke patients. J Neurol Neurophys 2016;7:1000395.
  26. Rael LT, Bar-Or R, Aumann RM, Slone DS, Mains CW, Bar-Or D. Oxidation-reduction potential and paraoxonase-arylesterase activity in trauma patients. Biochem Biophys Res Commun 2007;361:561-5. https://doi.org/10.1016/j.bbrc.2007.07.078
  27. Rael LT, Bar-Or R, Mains CW, Slone DS, Levy AS, Bar-Or D. Plasma oxidation-reduction potential and protein oxidation in traumatic brain injury. J Neurotrauma 2009;26:1203-11. https://doi.org/10.1089/neu.2008.0816
  28. Bobe G, Cobb TJ, Leonard SW, Aponso S, Bahro CB, Koley D, et al. Increased static and decreased capacity oxidation-reduction potentials in plasma are predictive of metabolic syndrome. Redox Biol 2017;12:121-8. https://doi.org/10.1016/j.redox.2017.02.010
  29. Bar-Or R, Rael LT, Curtis CG, Mains CW, Slone DS, Bar-Or D. Raman spectral signatures of human liver perfusates correlate with oxidation reduction potential. Mol Med Rep 2009;2:175-80.
  30. Spanidis Y, Goutzourelas N, Stagos D, Kolyva AS, Gogos CA, Bar-Or D, et al. Assessment of oxidative stress in septic and obese patients using markers of oxidation-reduction potential. In Vivo 2015;29:595-600.
  31. Stagos D, Goutzourelas N, Bar-Or D, Ntontou AM, Bella E, Becker AT, et al. Application of a new oxidation-reduction potential assessment method in strenuous exercise-induced oxidative stress. Redox Rep 2015;20:154-62. https://doi.org/10.1179/1351000214Y.0000000118
  32. Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev 2016;28:1-10. https://doi.org/10.1071/RD15325
  33. Sabeti P, Pourmasumi S, Rahiminia T, Akyash F, Talebi AR. Etiologies of sperm oxidative stress. Int J Reprod Biomed (Yazd) 2016;14:231-40. https://doi.org/10.29252/ijrm.14.4.231
  34. de Lamirande E, Leduc BE, Iwasaki A, Hassouna M, Gagnon C. Increased reactive oxygen species formation in semen of patients with spinal cord injury. Fertil Steril 1995;63:637-42. https://doi.org/10.1016/S0015-0282(16)57438-X
  35. Aprioku JS. Pharmacology of free radicals and the impact of reactive oxygen species on the testis. J Reprod Infertil 2013;14:158-72.
  36. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 2003;79:829-43. https://doi.org/10.1016/S0015-0282(02)04948-8
  37. Łuczaj W, Skrzydlewska E. DNA damage caused by lipid peroxidation products. Cell Mol Biol Lett 2003;8:391-413.
  38. Aitken RJ, Whiting S, De Iuliis GN, McClymont S, Mitchell LA, Baker MA. Electrophilic aldehydes generated by sperm metabolism activate mitochondrial reactive oxygen species generation and apoptosis by targeting succinate dehydrogenase. J Biol Chem 2012;287:33048-60. https://doi.org/10.1074/jbc.M112.366690
  39. Cui H, Kong Y, Zhang H. Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct 2012;2012:646354.
  40. Agarwal A, Allamaneni SS, Nallella KP, George AT, Mascha E. Correlation of reactive oxygen species levels with the fertilization rate after in vitro fertilization: a qualified meta-analysis. Fertil Steril 2005;84:228-31. https://doi.org/10.1016/j.fertnstert.2004.12.057
  41. Agarwal A, Prabakaran S, Allamaneni SS. Relationship between oxidative stress, varicocele and infertility: a meta-analysis. Reprod Biomed Online 2006;12:630-3. https://doi.org/10.1016/S1472-6483(10)61190-X
  42. Condorelli RA, Russo GI, Calogero AE, Morgia G, La Vignera S. Chronic prostatitis and its detrimental impact on sperm parameters: a systematic review and meta-analysis. J Endocrinol Invest 2017 May 9 [Epub]. https://doi.org/10.1007/s40618-017-0684-0.
  43. Adams JA, Galloway TS, Mondal D, Esteves SC, Mathews F. Effect of mobile telephones on sperm quality: a systematic review and meta-analysis. Environ Int 2014;70:106-12. https://doi.org/10.1016/j.envint.2014.04.015
  44. Sharma R, Harlev A, Agarwal A, Esteves SC. Cigarette smoking and semen quality: a new meta-analysis examining the effect of the 2010 World Health Organization laboratory methods for the examination of human semen. Eur Urol 2016;70:635-45. https://doi.org/10.1016/j.eururo.2016.04.010
  45. Bar-Or R, Bar-Or D, Rael LT, inventors; Aytu Bioscience, Inc., assignee. Method and apparatus for measuring oxidationreduction potential. United States patent US 9,528,959. 2016 Dec 27.
  46. Rael LT, Bar-Or R, Kelly MT, Carrick MM, Bar-Or D. Assessment of oxidative stress in patients with an isolated traumatic brain injury using disposable electrochemical test strips. Electroanalysis 2015;27:2567-73. https://doi.org/10.1002/elan.201500178
  47. Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 2002;30:620-50. https://doi.org/10.1080/01926230290166724
  48. Victorin K, Hellstrom KG, Rylander R. Redox potential measurements for determining the disinfecting power of chlorinated water. J Hyg (Lond) 1972;70:313-23. https://doi.org/10.1017/S0022172400022361
  49. Bergendahl JA, Stevens L. Oxidation reduction potential as a measure of disinfection effectiveness for chlorination of wastewater. Environ Prog Sustain Energy 2005;24:214-22.
  50. Ye Z, Wang S, Chen T, Gao W, Zhu S, He J, et al. Inactivation mechanism of escherichia coli induced by slightly acidic electrolyzed water. Sci Rep 2017;7:6279. https://doi.org/10.1038/s41598-017-06716-9
  51. McFarland MJ, Glarborg C, Ross MA. Chemical treatment of chelated metal finishing wastes. Water Environ Res 2012;84:2086-9. https://doi.org/10.2175/106143012X13373575831277
  52. Hjorth M, Pedersen CO, Feilberg A. Redox potential as a means to control the treatment of slurry to lower HS emissions. Sensors (Basel) 2012;12:5349-62. https://doi.org/10.3390/s120505349
  53. Agarwal A, Sharma R, Roychoudhury S, Du Plessis S, Sabanegh E. MiOXSYS: a novel method of measuring oxidation reduction potential in semen and seminal plasma. Fertil Steril 2016;106:566-73.e10. https://doi.org/10.1016/j.fertnstert.2016.05.013
  54. Agarwal A, Roychoudhury S, Sharma R, Gupta S, Majzoub A, Sabanegh E. Diagnostic application of oxidation-reduction potential assay for measurement of oxidative stress: clinical utility in male factor infertility. Reprod Biomed Online 2017;34:48-57. https://doi.org/10.1016/j.rbmo.2016.10.008
  55. Agarwal A, Wang SM. Clinical relevance of oxidation-reduction potential in the evaluation of male infertility. Urology 2017;104:84-9. https://doi.org/10.1016/j.urology.2017.02.016
  56. Agarwal A, Henkel R, Sharma R, Tadros N, Sabanegh E. Determination of seminal oxidation-reduction potential (ORP) as an easy and cost-effective clinical marker of male infertility. Andrologia 2017 Forthcoming.
  57. Agarwal A, Arafa M, Chandrakumar R, Majzoub A, AlSaid S, Elbardisi H. A multicenter study to evaluate oxidative stress by oxidation-reduction potential, a reliable and reproducible method. Andrology 2017;5:939-45. https://doi.org/10.1111/andr.12395
  58. Arafa M, Agarwal A, Al Said S, Majzoub A, Sharma R, Bjugstad KB, et al. Semen quality and infertility status can be identified through measures of oxidation-reduction potential. Andrologia 2017 Aug 3 [Epub]. https://doi.org/10.1111/and.12881.
  59. Agarwal A, Sharma R, Henkel R, Roychoudhury S, Sikka SC, du Plessis S, et al. Cumene hydroperoxide induced changes in oxidation-reduction potential in fresh and frozen seminal ejaculates. Andrologia 2017 Mar 15 [Epub]. https://doi.org/10.1111/and.12796.
  60. Shekarriz M, Thomas AJ Jr, Agarwal A. Effects of time and sperm concentration on reactive oxygen species formation in human semen. Arch Androl 1995;34:69-75. https://doi.org/10.3109/01485019508987833
  61. Du Plessis SS, Gokul S, Agarwal A. Semen hyperviscosity: causes, consequences, and cures. Front Biosci (Elite Ed) 2013;5:224-31.
  62. Aitken RJ, Clarkson JS. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl 1988;9:367-76. https://doi.org/10.1002/j.1939-4640.1988.tb01067.x
  63. Li Z, Zhou Y, Liu R, Lin H, Liu W, Xiao W, et al. Effects of semen processing on the generation of reactive oxygen species and mitochondrial membrane potential of human spermatozoa. Andrologia 2012;44:157-63. https://doi.org/10.1111/j.1439-0272.2010.01123.x
  64. Agarwal A, Mulgund A, Sharma R, Sabanegh E. Mechanisms of oligozoospermia: an oxidative stress perspective. Syst Biol Reprod Med 2014;60:206-16. https://doi.org/10.3109/19396368.2014.918675
  65. Roychoudhury C, Dorsey C, Choudhury BP, Kushal KK. Oxidation-reduction potential can help distinguish semen samples under oxidative stress. In: Poster presented at: 33rd Annual European Society for Health and Reproduction Conference; 2017 Jul 3-5; Geneva, Switzerland.
  66. Elbardisi H, Arafa M, Agarwal A, AlSaid S, Majzoub A, Keyvanifard F, et al. Seminal fluid static oxidation reduction potential is lower in seminal fluid that meets WHO criteria for fertile men. In: Poster presented at: 32nd Annual European Society for Health and Reproduction Conference; 2016 Jul 3-6; Helsinki, Finland.
  67. Toor JS, Daniels L, Yafi FA, Hellstrom W, Sikka SC. Semen oxidative reduction potential (ORP) is related to abnormal semen parameters in male factor infertility. In: Poster presented at: 41st Annual America Society of Andrology Conference; 2016 Apr 2-5; New Orleans, LA, USA.
  68. Agarwal A, Elbardisi H, Arafa M, Okada H, Suzuki K, Homa S, et al. Multi-center evaluation of oxidation reduction potential assay in the infertile male. In: Poster presented at: 73rd Annual American Society for Reproductive Medicine Conference; 2017 Oct 28-Nov 1; San Antonio, TX, USA.
  69. Kovac JR, Smith RP, Cajipe M, Lamb DJ, Lipshultz LI. Men with a complete absence of normal sperm morphology exhibit high rates of success without assisted reproduction. Asian J Androl 2017;19:39-42.
  70. Shabtaie SA, Gerkowicz SA, Kohn TP, Ramasamy R. Role of abnormal sperm morphology in predicting pregnancy outcomes. Curr Urol Rep 2016;17:67. https://doi.org/10.1007/s11934-016-0623-1
  71. Franken DR. How accurate is sperm morphology as an indicator of sperm function? Andrologia 2015;47:720-3. https://doi.org/10.1111/and.12324
  72. Arafa M, Elbardisi H, Agarwal A, AlSaid S, Majzoub A, Al Rumaihi K, et al. Oxidation-reduction potential: a new predictor for sperm morphology in infertile men. In: Poster presented at: 32nd Annual European Society for Health and Reproduction Conference; 2016 Jul 3-6; Helsinki, Finland.
  73. Ayaz A, Bjugstad KB, Bar-Or D, Armagan A. Infertile men have a redox balance that distinguishes them from fertile men. In; Poster presented at: 72nd Annual American Society for Reproductive Medicine Conference; 2016 Oct 15-19; Salt Lake City, UT, USA.
  74. Hamilton JA, Cissen M, Brandes M, Smeenk JM, de Bruin JP, Kremer JA, et al. Total motile sperm count: a better indicator for the severity of male factor infertility than the WHO sperm classification system. Hum Reprod 2015;30:1110-21. https://doi.org/10.1093/humrep/dev058
  75. Borges E Jr, Setti AS, Braga DP, Figueira RC, Iaconelli A Jr. Total motile sperm count has a superior predictive value over the WHO 2010 cut-off values for the outcomes of intracytoplasmic sperm injection cycles. Andrology 2016;4:880-6. https://doi.org/10.1111/andr.12199
  76. Al Said S, Majzoub A, Arafa M, El Bardisi H, Agarwal A, Al Rumaihi K. Oxidation-reduction potential: a valuable tool for male fertility evaluation. In: Poster presented at: 33rd Annual European Society for Health and Reproduction Conference; 2017 Jul 3-5; Geneva, Switzerland.
  77. Saleh RA, Agarwal A, Nada EA, El-Tonsy MH, Sharma RK, Meyer A, et al. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril 2003;79 Suppl 3:1597-605. https://doi.org/10.1016/S0015-0282(03)00337-6
  78. Simon L, Proutski I, Stevenson M, Jennings D, McManus J, Lutton D, et al. Sperm DNA damage has a negative association with live-birth rates after IVF. Reprod Biomed Online 2013;26:68-78. https://doi.org/10.1016/j.rbmo.2012.09.019
  79. Lewis SE, John Aitken R, Conner SJ, Iuliis GD, Evenson DP, Henkel R, et al. The impact of sperm DNA damage in assisted conception and beyond: recent advances in diagnosis and treatment. Reprod Biomed Online 2013;27:325-37. https://doi.org/10.1016/j.rbmo.2013.06.014
  80. Agarwal A, Majzoub A, Esteves SC, Ko E, Ramasamy R, Zini A. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol 2016;5:935-50. https://doi.org/10.21037/tau.2016.10.03
  81. Arafa M, ElBardisi H, Majzoub A, Al Said S, AlNawasra H, Khalafalla K, et al. Correlation of sperm DNA fragmentation and seminal oxidation-reduction potential in infertile men. In: Poster presented at: 33rd Annual European Society for Health and Reproduction Conference; 2017 Jul 3-5; Geneva, Switzerland.
  82. Majzoub A, Arafa M, Elbardisi H, Al Said S, Agarwal A. Al Rumaihi K. Oxidation-reduction potential and sperm DNA fragmentation levels in sperm morphologic anomalies. In: Poster presented at: 33rd Annual European Society for Health and Reproduction Conference; 2017 Jul 3-5; Geneva, Switzerland.
  83. Dorostghoal M, Kazeminejad SR, Shahbazian N, Pourmehdi M, Jabbari A. Oxidative stress status and sperm DNA fragmentation in fertile and infertile men. Andrologia 2017 Jan 26 [Epub]. https://doi.org/10.1111/and.12762.
  84. Ionmmiello VM, Albani E, Di Rosa A, Marras A, Menduni F, Morreale G, et al. Ejaculate oxidative stress is related with sperm DNA fragmentation and round cells. Int J Endocrinol 2015;2015:321901.
  85. Bisht S, Faiq M, Tolahunase M, Dada R. Oxidative stress and male infertility. Nat Rev Urol 2017;14:470-85. https://doi.org/10.1038/nrurol.2017.69
  86. Ayaz A, Balaban B, Sikka S, Isiklar A, Tasdemir M, Urman B. Effect of seminal ORP value on embryo quality and clinical pregnancy rate. In: Poster presented at: 33rd Annual European Society for Health and Reproduction Conference; 2017 Jul 3-5; Geneva, Switzerland.
  87. Agarwal A, Roychoudhury S, Esteves S, Rosas IM, Sharma R, Gupta S. Oxidation-reduction potential (ORP) of spermatazoa selected for intracytoplasmic sperm injection (ICSI) after exposure to polyvinylpyrrolidone (PVP) and hyaluronic acid (HA). In: Poster presented at: 32nd Annual European Society for Health and Reproduction Conference; 2016 Jul 3-6; Helsinki, Finland.
  88. Jensen CF, Ostergren P, Dupree JM, Ohl D, Sonksen J, Fode M. Varicocele and male infertility. Nat Rev Urol 2017;14:523-33. https://doi.org/10.1038/nrurol.2017.98
  89. Agarwal A, Wang SM, Tadros N, Sabanegh E. Involvement of oxidation reduction potential in the pathophysiology of male infertility patients with varicocele. In: Poster presented at 112th Annual American Urological Association Conference; 2017 May 12-16; Boston, MA, USA.
  90. Arafa M, ElBardisi H, Majzoub A, AlSaid S, Jaber A, Khalafalla K, et al. Role of oxidation reduction potential in varicocele associated male infertility. In: Poster presented at 112th American Urological Association Conference; 2017 May 12-16; Boston, MA, USA.
  91. Agarwal A, Majzoub A, Roychoudhury S, Arafa MM. Oxidation reduction potential: a novel marker of varicocele pathophysiology. In: Poster presented at: 72nd Annual American Society for Reproductive Medicine Conference; 2016 Octr 15-19; Salt Lake City, UT, USA.
  92. Saleh R, Agarwal A. High levels of seminal oxidation-reduction potential (ORP) in infertile men with clinical varicocele. In: Poster presented at: 33rd Annual European Society for Health and Reproduction Conference; 2017 Jul 3-5; Geneva, Switzerland.
  93. Saleh RA, Agarwal A, Kandirali E, Sharma RK, Thomas AJ, Nada EA, et al. Leukocytospermia is associated with increased reactive oxygen species production by human spermatazoa. Fertil Steril 2002;78:1215-24. https://doi.org/10.1016/S0015-0282(02)04237-1
  94. Alvarez JG, Sharma RK, Ollero M, Saleh RA, Lopez MC, Thomas AJ Jr, et al. Increased DNA damage in sperm from leukocytospermic semen samples as determined by sperm chromatin structure assay. Fertil Steril 2002;78:319-29. https://doi.org/10.1016/S0015-0282(02)03201-6
  95. Hagan S, Khurana N, Chandra S, Abdel-Mageed AB, Mondal D, Hellstrom WJ, et al. Differential expression of novel biomarkers (TLR-2, TLR-4, COX-2, and Nrf-2) of inflammation and oxidative stress in semen of leukocytospermia patients. Andrology 2015;3:848-55. https://doi.org/10.1111/andr.12074
  96. Sikka SC, Toor JS, Lucelia D, Yafi FA, Hellstrom W. Measurement of oxidation-reduction potential (ORP) as a newer tool indicative of oxidative stress in infertile men with leukocytospermia. In: Poster presented at: 41st Annual America Society of Andrology Conference; 2016 Apr 2-5; New Orleans, LA, USA.
  97. Kirby EW, Wiener LE, Rajanahally S, Crowell K, Coward RM. Undergoing varicocele repair before assisted reproduction improves pregnancy rate and live birth rate in azoospermic and oligospermic men with a varicocele: a systematic review and meta-analysis. Fertil Steril 2016;106:1338-43. https://doi.org/10.1016/j.fertnstert.2016.07.1093
  98. Majzoub A, Agarwal A. Antioxidant therapy in idiopathic oligoasthenoteratozoospermia. Indian J Urol 2017;33:207-14. https://doi.org/10.4103/iju.IJU_15_17
  99. Jung JH, Kim MH, Kim J, Baik SK, Koh SB, Park HJ, et al. Treatment of leukocytospermia in male infertility: a systematic review. World J Mens Health 2016;34:165-72. https://doi.org/10.5534/wjmh.2016.34.3.165
  100. Wright C, Milne S, Leeson H. Sperm DNA damage caused by oxidative stress: modifiable clinical, lifestyle and nutritional factors in male infertility. Reprod Biomed Online 2014;28:684-703. https://doi.org/10.1016/j.rbmo.2014.02.004

Cited by

  1. The Ameliorating Effect of Berberine-Rich Fraction against Gossypol-Induced Testicular Inflammation and Oxidative Stress vol.2018, pp.None, 2017, https://doi.org/10.1155/2018/1056173
  2. Redox Potential Measurements in Red Blood Cell Packets Using Nanoporous Gold Electrodes vol.3, pp.8, 2017, https://doi.org/10.1021/acssensors.8b00498
  3. A Comparison Between Two Assays for Measuring Seminal Oxidative Stress and their Relationship with Sperm DNA Fragmentation and Semen Parameters vol.10, pp.3, 2017, https://doi.org/10.3390/genes10030236
  4. Rosiglitazone in the thawing medium improves mitochondrial function in stallion spermatozoa through regulating Akt phosphorylation and reduction of caspase 3 vol.14, pp.7, 2017, https://doi.org/10.1371/journal.pone.0211994
  5. Obesity and metabolic syndrome associated with systemic inflammation and the impact on the male reproductive system vol.82, pp.5, 2019, https://doi.org/10.1111/aji.13178
  6. Aberrant Upregulation of Compensatory Redox Molecular Machines May Contribute to Sperm Dysfunction in Infertile Men with Unilateral Varicocele: A Proteomic Insight vol.32, pp.8, 2017, https://doi.org/10.1089/ars.2019.7828
  7. Redox Homeostasis and Metabolism in Cancer: A Complex Mechanism and Potential Targeted Therapeutics vol.21, pp.9, 2020, https://doi.org/10.3390/ijms21093100
  8. Evaluation from a different perspective of 10‐year results of infertile males with Y chromosome AZFc microdeletions compared with a control group vol.52, pp.6, 2020, https://doi.org/10.1111/and.13572
  9. MOTILIPERM Ameliorates Immobilization Stress-Induced Testicular Dysfunction via Inhibition of Oxidative Stress and Modulation of the Nrf2/HO-1 Pathway in SD Rats vol.21, pp.13, 2020, https://doi.org/10.3390/ijms21134750
  10. Male reproductive health and intergenerational metabolic responses from a small RNA perspective vol.288, pp.3, 2017, https://doi.org/10.1111/joim.13096
  11. Relationship of Seminal Oxidation-Reduction Potential with Sperm DNA Integrity and pH in Idiopathic Infertile Patients vol.9, pp.9, 2020, https://doi.org/10.3390/biology9090262
  12. Oxidative Stress is Associated with Reduced Sperm Motility in Normal Semen vol.14, pp.5, 2017, https://doi.org/10.1177/1557988320939731
  13. Oxidative and nitrosative stress in frozen-thawed pig spermatozoa. II: Effect of the addition of saccharides to freezing medium on sperm function vol.97, pp.None, 2020, https://doi.org/10.1016/j.cryobiol.2020.10.015
  14. Voltammetric Behaviour of Drug Molecules as a Predictor of Metabolic Liabilities vol.88, pp.4, 2020, https://doi.org/10.3390/scipharm88040046
  15. A Novel Endothelial Damage Inhibitor Reduces Oxidative Stress and Improves Cellular Integrity in Radial Artery Grafts for Coronary Artery Bypass vol.8, pp.None, 2021, https://doi.org/10.3389/fcvm.2021.736503
  16. Diagnostic value of advanced semen analysis in evaluation of male infertility vol.53, pp.2, 2017, https://doi.org/10.1111/and.13625
  17. Conventional semen analysis and advanced sperm function tests in diagnosis and management of varicocele vol.53, pp.2, 2017, https://doi.org/10.1111/and.13629
  18. Comparative study of fertility parameters in vitrified human spermatozoa in the presence or absence of EmbryORP ® : A novel antioxidant vol.53, pp.4, 2017, https://doi.org/10.1111/and.13886
  19. The effect of paternal age on intracytoplasmic sperm injection outcome in unexplained infertility vol.19, pp.3, 2021, https://doi.org/10.1080/2090598x.2021.1955553
  20. Redox Balance in Male Infertility: Excellence through Moderation-“Μέτρον ἄριστον” vol.10, pp.10, 2017, https://doi.org/10.3390/antiox10101534
  21. Micro-colloidal catalyst of palladium nanoparticles on polyaniline-coated carbon microspheres for a non-enzymatic hydrogen peroxide sensor vol.171, pp.None, 2021, https://doi.org/10.1016/j.microc.2021.106785