DOI QR코드

DOI QR Code

Complete genome sequence of Bacillus thuringiensis C25, a potential biocontrol agent for sclerotia-forming fungal phytopathogens

생물학적방제 효과가 뛰어난 Bacillus thuringiensis C25 균주의 유전체 분석

  • Lee, Hwa-Yong (Department of Biology, Chungbuk National University) ;
  • Won, Kyungho (Pear Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Yoon-Kyeong (Pear Research Institute, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Cho, Min (Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University) ;
  • Kim, Kangmin (Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University) ;
  • Ryu, Hojin (Department of Biology, Chungbuk National University)
  • 이화용 (충북대학교 자연과학대학 생물학과) ;
  • 원경호 (국립원예특작과학원 배연구소) ;
  • 김윤경 (국립원예특작과학원 배연구소) ;
  • 조민 (전북대학교 환경생명자원대학 생명공학부) ;
  • 김강민 (전북대학교 환경생명자원대학 생명공학부) ;
  • 류호진 (충북대학교 자연과학대학 생물학과)
  • Received : 2017.07.24
  • Accepted : 2017.07.25
  • Published : 2017.09.30

Abstract

We here provide the complete genome sequence of Bacillus thuringiensis C25, the strain showing antagonistic effects on fungal phytopathogens. The genome comprised of 5,308,062 bp with 35.32% G+C content of a circular chromosome and a plasmid containing 308,946 bp with 32.23% G+C content. The chromosome and plasmid genome included 5,683 protein coding DNA sequences, 107 tRNA and 42 rRNA genes.

생물학적방제 효과가 뛰어난 Bacillus thuringiensis C25 균주의 유전체 분석을 수행하였다. 본 균주는 5,308,062 bp, G+C 비율 35.32%의 염색체와 308,946 bp, 32.23% G+C 함량이 포함된 plasmid를 지닌 것으로 확인되었다. 염색체와 plasmid DNA에 예측된 유전자의 총 수는 5,683개의 단백질 코딩유전자와 107개 tRNA 그리고 42개의 rRNA였다.

Keywords

References

  1. Alamri, S., Hashem, M., and Mostafa, Y.S. 2012. In vitro and in vivo biocontrol of soil-borne phytopathogenic fungi by certain bioagents and their possible mode of action. Biocontrol. Sci. 17, 155-167. https://doi.org/10.4265/bio.17.155
  2. Bardin, M., Ajouz, S., Comby, M., Lopez-Ferber, M., Graillot, B., Siegwart, M., and Nicot, P.C. 2015. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Front. Plant Sci. 6, 566.
  3. Bravo, A., Likitvivatanavong, S., Gill, S.S., and Soberon, M. 2011. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect. Biochem. Mol. Biol. 41, 423-431. https://doi.org/10.1016/j.ibmb.2011.02.006
  4. Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E.E., et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563-569. https://doi.org/10.1038/nmeth.2474
  5. Conesa, A., Gotz, S., Garcia-Gomez, J.M., Terol, J., Talon, M., and Robles, M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674-3676. https://doi.org/10.1093/bioinformatics/bti610
  6. Delcher, A.L., Bratke, K.A., Powers, E.C., and Salzberg, S.L. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23, 673-679. https://doi.org/10.1093/bioinformatics/btm009
  7. Hong, C.Y., Park, S.Y., Kim, S.H., Lee, S.Y., Choi, W.S., and Choi, I.G. 2016. Degradation and polymerization of monolignols by Abortiporus biennis, and induction of its degradation with a reducing agent. J. Microbiol. 54, 675-685. https://doi.org/10.1007/s12275-016-6158-9
  8. Shrestha, A., Sultana, R., Chae, J.C., Kim, K., and Lee, K.J. 2015. Bacillus thuringiensis C25 which is rich in cell wall degrading enzymes efficiently controls lettuce drop caused by Sclerotinia minor. European J. Plant Pathol. 142, 577-589. https://doi.org/10.1007/s10658-015-0636-5
  9. Sultana, R. and Kim, K. 2016. Bacillus thuringiensis C25 suppresses popcorn disease caused by Ciboria shiraiana in mulberry (Morus australis L.). Biocontrol Sci. Technol. 26, 145-162. https://doi.org/10.1080/09583157.2015.1084999

Cited by

  1. Bacillus thuringiensis C25의 흰날개무늬병 Rosellinia necatrix에 대한 항진균 활성에 관여하는 유전자 특성 및 기능 유전체학적 연구 vol.47, pp.4, 2017, https://doi.org/10.4489/kjm.20190046