DOI QR코드

DOI QR Code

Screening of Antimicrobial Activity of Marine-Derived Biomaterials against Fish Pathogens

해양 유래 미생물을 이용한 어류질병세균에 대한 항균활성 탐색

  • Kim, Dong-Hwi (Marine Applied Microbes and Aquatic Organism Disease Control Lab, Department of Aquatic Biomedical Sciences, School of Marine Biomedical Sciences & Marine and Environmental Research Institute, Jeju National University) ;
  • Park, So-Hyun (Marine Applied Microbes and Aquatic Organism Disease Control Lab, Department of Aquatic Biomedical Sciences, School of Marine Biomedical Sciences & Marine and Environmental Research Institute, Jeju National University) ;
  • Kim, Ji-Hyun (Marine Applied Microbes and Aquatic Organism Disease Control Lab, Department of Aquatic Biomedical Sciences, School of Marine Biomedical Sciences & Marine and Environmental Research Institute, Jeju National University) ;
  • Lee, Hae-Ri (Marine Applied Microbes and Aquatic Organism Disease Control Lab, Department of Aquatic Biomedical Sciences, School of Marine Biomedical Sciences & Marine and Environmental Research Institute, Jeju National University) ;
  • Heo, Moon-Soo (Marine Applied Microbes and Aquatic Organism Disease Control Lab, Department of Aquatic Biomedical Sciences, School of Marine Biomedical Sciences & Marine and Environmental Research Institute, Jeju National University)
  • 김동휘 (제주대학교 해양과학대학 수산생명의학과) ;
  • 박소현 (제주대학교 해양과학대학 수산생명의학과) ;
  • 김지현 (제주대학교 해양과학대학 수산생명의학과) ;
  • 이해리 (제주대학교 해양과학대학 수산생명의학과) ;
  • 허문수 (제주대학교 해양과학대학 수산생명의학과)
  • Received : 2017.08.24
  • Accepted : 2017.09.08
  • Published : 2017.09.28

Abstract

The prevalence of infections due to pathogenic bacteria such as Edwardsiella tarda, Streptococcus parauberis, and Photobacterium phosphoreum in fish farms in Jeju Island and their management by marine-derived biomaterials was studied. In this study, we isolated eight spices type of marine-derived biomaterials from four sea areas of Jeju Island. An antibiotic disc susceptibility test confirmed that the isolated marine-derived biomaterials showed weak resistance only to oxytetracycline and penicillin and sensitivity to the other antibiotics tested, and antimicrobial activity against fish pathogens with the inhibitory zone of 22 mm, 18 mm, and 19 mm for MD-02, MD-04, and MD-06 against E. tarda strains, respectively, and 19 mm, 22 mm, 30 mm, and 29 mm for MD-01, MD-02, MD-04, and MD-06 against S. parauberis strains, respectively, while all the marine-derived biomaterials showed antibacterial activity against P. phosphoreum. Among the eight biomaterials selected, Bacillus subtilis MD-02 displayed the greatest antibacterial activity against the three tested fish pathogens and also displayed susceptibility to antibiotics. The growth of Bacillus subtilis MD-02 was greatest with the carbon source, dextrine; nitrogen source, peptone; and mineral source, $MgSO_4{\cdot}7H_2O$. Hence, the present study confirmed that the isolate B. subtilis MD-02 from Jeju Island could be a potential antimicrobial agent against fish pathogens and a potential pharmacotherapeutic agent.

제주도 육상 양식장에서 주로 발생하는 어류 질병세균인 Edward tarda, Streptococcus parauberis, Photobacterium phosphoreum에 대한 피해를 줄이고 치료하고자 해양유래 미생물을 이용하고자 한다. 본 연구진은 제주 지역 4개 해역에서 해양유래 미생물을 8종 분리하였다. 분리 된 해양유래 미생물을 이용하여 항생제 디스크에 대한 감수성 확인을 한 결과, Oxytetracycline과 penicillin에서만 약한 내성을 보일 뿐 나머지 항생제 디스크에 대해선 감수성을 보였다. 해양 유래 미생물을 이용하여 어류질병에 대한 항균활성을 확인한 결과 E. tarda에 대해선 MD-02, MD-04, MD-06이 각각 22 mm, 18 mm, 19 mm의 억제환이 나타났다. S. parauberis에 대해선 MD-01, MD-02, MD-04, MD-06이 각각 19 mm, 22 mm, 30 mm, 29 mm의 억제환이 나타났으며, P. Phosphoreum에 대해선 모든 해양 유래 미생물에서 항균활성을 보였다. 이 중 어류질병세균에 대하여 항균활성이 가장 좋으며 항생제에 감수성을 보이는 B. subtilis MD-02를 최종 선정하였다. B. subtilis MD-02의 배지조성은 탄소원에서는 Dextrine, 질소원에서는 Peptone, 무기염에서는 $MgSO_4{\cdot}7H_2O$에서 생육이 가장 활발한 것을 확인하였다. 이에 따라 해양에서 분리된 B. subtilis MD-02는 어류질병균주에 대한 항균활성을 가지는 동시에 향후 치료제로써의 가치가 있다고 사료된다.

Keywords

References

  1. Ministry for Food Agriculture Forestry and Fisheries. 2015. Statistical year book of maritime affairs and fisheries.
  2. Kim DH, Subramanian D, Jang YH, Heo MS. 2016. Inhibitory effect of transition metal gallium (Ga(NO3)3) on biofilm by fish pathogens. Microbiol. Biotechnol. Lett. 44: 535-539. https://doi.org/10.4014/mbl.1607.07009
  3. Statistics Korea. 2016. Aquaculture Status Survey.
  4. Lee CH, Kim PY, Ko CS, Oh DC, Kang BJ. 2007. Biological characteristics of Streptococcus iniae and Streptococcus parauberis isolated from cultured flounder, Paralichthys olivaceus, in Jeju. J. Fish Pathol. 20: 33-40.
  5. Nguyen HT, Kanai K. 1999. Selective agars for the isolation of Streptococcus iniae from Japanese flounder, Paralichthys olivaceus, and its cultural environment. J. Appl. Microbiol. 86: 769-776. https://doi.org/10.1046/j.1365-2672.1999.00724.x
  6. Kim DH, Subramanian D, Park SH, Jang YH, Heo MS. 2017. Assessment and potential application of the probiotic strain, Bacillus amyloliquefaciens JFP2, Isolated from fermented seafood- Jeotgal in flounder Paralichthys olivaceus juveniles. Isr. J. Aquac. 69: 1352-1364.
  7. Cottrell MT, Moore JA, Kirchman DL. 1999. Chitinases from uncultured marine microorganisms. J. Appl. Environ. Microbiol. 65: 2553-2557.
  8. Friedrich AB, Merkert H, Fendert T, Hacker J, Proksch P, Hentschel U. 1999. Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). J. Mar. Biol. 134: 461-470. https://doi.org/10.1007/s002270050562
  9. Bergman O, Haber M, Mayzel B, Anderson MA, Shpigel M, Hill RT, et al. 2011. Marine-based cultivation of Diacarnus sponges and the bacterial community composition of wild and maricultured sponges and their larvae. Mar. Biotechnol. 13: 1169-1182. https://doi.org/10.1007/s10126-011-9391-6
  10. Jung SH, Choi DL, Kim JW, Jo MR, Jee BY, Seo JS. 2009. Pharmacokinetics of oxolinic acid in cultured olive flounder Paralichthys olivaceus by oral administration, injection and dipping. J. Fish Pathol. 22: 125-135.
  11. Woo SH, Lee JH, Kim YK, Cho MY, Jung SH, Kim JW, et al. 2010. Effects of garlic Allium sativum extract immersion on the immune responses of olive flounder Paralichthys olivaceus prechallenged with pathogenic bacteria. J. Fish Pathol. 23: 199-209.
  12. Chiang WC, Martin M, Jensen PO, Hoiby N, Nielsen TE, Givskov M, et al. 2013. Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 57: 2352-2361. https://doi.org/10.1128/AAC.00001-13
  13. Kim JH, Kim CH, Hacker J, Ziebuhr W, Lee BK, Cho SH. 2008. Molecular characterization of regulatory genes associated with biofilm variation in a Staphylococcus aureus strain. J. Microbiol. Biotechnol. 18: 28-34.
  14. Oh EG, Yu HS, Shin SB, Son KT, Park KB, Kwon JY, Lee HJ. 2008. Trimethoprim resistance of Vibrio parahaemolyticus isolated from the fish farm. J. Korean Fish. Soc. 41: 324-329.
  15. Lee KW, Park KS. 2010. Antibiotic-resistance profiles and the identification of the ampicillin-resistance gene of Vibrio parahaemolyticus isolated from seawater. Korean J. Fish Aquat. Sci. 43: 637-641.
  16. Park EH, Kim JA, Choi SH, Bin JH, Cheigh HS, Suk DH, et al. 2007. Isolation and antimicrobial susceptibility of Campylobacter jejuni from diarrhea patients. J. Life Sci. 17: 811-815. https://doi.org/10.5352/JLS.2007.17.6.811
  17. Park WM, Kim GH, Hyeon JW. 1995. New synthetic medium for growth of mycelium of Pleurotus species. Korean J. Mycol. 23: 275-283.
  18. Sung JM, Choi YS, Shrestha B, Park YJ. 2002. Cultural characteristics of mycelial growth by Cordyceps militaris. Korean J. Mycol. 30: 1-5. https://doi.org/10.4489/KJM.2002.30.1.001
  19. Ok M, Choi YS. 2005. Screening of fibrinolytic enzyme producing from microorganisms in korean fermented soybean paste and optimum conditions of enzyme production. Korean J. Food Preserv. 12: 643-649.
  20. Kang AS, Cha DY, Hong IP, Chang HY, Yu SH. 1994. Studies of cultural condition on the mycelial vegetative growth in Naematoloma sublateritium (Fr.) Karst. Korean J. Mycol. 22: 153-159.
  21. Oh EG, Son KT, Ha KS, Yoo HD, Yu HS, Shin SB, et al. 2009. Antimicrobial resistance of Vibrio strains from brackish water on the coast of Gyeongsangnamdo. Korean J. Fish Aqua Sci. 42: 335-343.
  22. Ryu HS, Shon MY, Cho SJ, Park SK, Lee SW. 2007. Characterization of antibacterial substance-producing Bacillus subtilis isolated from traditional Doenjang. J. Korean Soc. Appl. Biol. Chem. 50: 87-94.
  23. Kang B, Zhang X, Wu Z, Wang Z, Park S. 2014. Production of citrinin-free Monascus pigments by submerged culture at low pH. Enzyme Microb. Tec. 55: 50-57. https://doi.org/10.1016/j.enzmictec.2013.12.007
  24. Chen W, He Y, Zhou Y, Shao Y, Feng Y, Li M, et al. 2015. Edible filamentous fungi from the species Monascus: early traditional fermentations, modern molecular biology, and future genomics. Compr. Rev. Food Sci. Food Saf. 14: 555-567. https://doi.org/10.1111/1541-4337.12145

Cited by

  1. 여드름균(Cutibacterium acnes)에 대한 해조류 추출물의 항균효과 vol.54, pp.1, 2017, https://doi.org/10.5657/kfas.2021.0111